WedefineafunctionO(k)similartotheRiemannZetafunctionζ(s)
O(k)=n→+∞limτ=2∑nτk1∀s∈Z∗,s.t.ζ(s)−O(s)=1
Functionssimilartothezetafunctionhavethefollowingproperties
m→+∞limn→+∞limj=2∑mk=2∑njk1=n→+∞limk=2∑nO(k)=43+41=1
SomepropertiesofRiemannfunctionsfromGaussianroundingfunctions
[n→+∞lims=2∑nζ(s)]=[n→+∞limk=1∑n{O(2k)+O(2k+1)}]=0
Considerfunctionscontainingα,fα(x)=xα1
n→+∞limx=1∑nfα(x)=1+2α1+3α1+4α1+⋯
PrecisionpositiveintegerPforseekingtheexactvalue
∀α>1,∃N,s.t.∣∣∣∣∣n→+∞limx=1∑nfα(x)−x=1∑N−1fα(x)∣∣∣∣∣=n→+∞limx=N∑nfα(x)≤10−P
Forexample,πandγEuler-Mascheroniconstantcommonlyusedinnumbertheory
π=3+6+6+6+6+6+⋱9272523212=˙3.14159,πp=3.14(P=2)
γ=n→+∞lim(k=1∑nk1−lnn)=˙0.577215664901532,γp=0.5772156(P=7)
Usingavalueof▽tocalculatetheeffectofNvaluesapproaching thetruevalue
▽=supN+infNsupN−infN
Themeaningof▽isthedifferencebetweentheerrorintervalandtheestimatedvalue

Simpleandauthenticseriesscalingmethod
Nα−11[ζ(α)−1]≤n→+∞limx=N∑nfα(x)≤Nα−11(1+2α1+⋯)=Nα−11ζ(α)
SolveinequalitiestoobtainsetsaboutNsim
Nsim={x∈Z∗:[{ζ(α)−1}⋅10P]α−11≤x≤⌈[ζ(α)⋅10P]α−11⌉}
Itseemsthatthevalueof▽willfluctuategreatlywiththechangeofP
▽sim=⌈[ζ(α)⋅10P]α−11⌉+[{ζ(α)−1}⋅10P]α−11⌈[ζ(α)⋅10P]α−11⌉−[{ζ(α)−1}⋅10P]α−11≥3⌈[ζ(α)⋅10P]α−11⌉10α−1P−1[10α−11−7α−11−1]
ApproachingthevalueoftheZetafunctionusinganintegralfunction

TheHarmonyofRiemann:Srectangle≤Sζ(s)integral≤Strapezoid
∀k,integrablefunctionfα(k)havingfα(k)≤∫k−1kfα(x)dx≤21(fα(k−1)+fα(k))
n→+∞limx=N∑nfα(x)≤∫N−1+∞fα(x)dx≤n→+∞limx=N∑nfα(x)+21fα(N−1)
DerivethesetNfromtherelationshipbetweenintegralsandseries
Nintegral={x∈Z∗:α−12x−α⋅10p≤2(x−1)α⋂x≤⌈(α−110P)α−11+1⌉}
ThelowerofsetNisdifficulttosolve,resultinginalargedeviationin▽integral.

Function∂x∂fα(x)=−α⋅fα+1(x)↘,it′sknownthatthefollowingequationholds

Thinkaboutfittingfunctions
⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧C(22k−1)=(22k−1+ϑ)α1=fα(k)S(k−1)=(k−1+ϕ)α1=fα(k)⟹⎩⎪⎪⎪⎨⎪⎪⎪⎧ϑ=21ϕ=1
Sothefollowinginequalityholdstrue
∫k−1kfα(x+1)dx≤fα(k)≤∫k−1kfα(x+21)dx
SumupfunctionsandintegralsfromNton(n→+∞)simultaneously
n→+∞lim∫N−1nfα(x+1)dx≤n→+∞limx=N∑nfα(x)≤n→+∞lim∫N−1nfα(x+21)dx
Resolvetheinequalityabove
NmidIntegral={x∈Z∗:⌈(α−110P)α−11⌉≤x≤⌈(α−110P)α−11+21⌉}
TheminimumvaluethatsatisfiestheconditionisequaltoinfNorsupN.
▽midIntegral≤(α−110P)α−111
TheexactvalueofNprecise
Nprecise={⌈(α−110P)α−11⌉∨⌈(α−110P)α−11+21⌉}