黎曼ζ(s)函数-计算机算子▽
  Navier-Stokesequations 2025年04月07日 9749 0

WedefineafunctionO(k)similartotheRiemannZetafunctionζ(s)\rm We \,\, define \,\,a \,\, function \,\, {\mathcal{O}(k)} \,\, similar \,\,to\,\, the\,\, Riemann\,\, Zeta\,\, function \,\,\zeta(s)

O(k)=limn+τ=2n1τksZ,s.t.ζ(s)O(s)=1\mathcal{O(k)}=\displaystyle\lim_{n\to+\infty}\sum_{\tau=2}^n\frac1{\tau^{k}}\,\,\,\,\,\,\,\,\,\,\,\forall\,s\in\mathbb{Z^*},\,\,s.t.\,\zeta(s)-\mathcal{O}(s)=1

Functionssimilartothezetafunctionhavethefollowingproperties\rm Functions \,\,similar \,\,to\,\, the\,\, zeta \,\,function\,\, have\,\, the\,\, following \,\,properties

limm+limn+j=2mk=2n1jk=limn+k=2nO(k)=34+14=1\displaystyle{\color{red}\lim_{m\to+\infty}\lim_{n\to+\infty}\sum_{j=2}^m\sum_{k=2}^n\frac1{j^{\,k}}}=\lim_{n\to+\infty}\sum_{k=2}^n\mathcal{O}(k)=\frac34+\frac14=1

SomepropertiesofRiemannfunctionsfromGaussianroundingfunctions\rm Some \,\,properties\,\, of\,\, Riemann \,\,functions \,\,from\,\, Gaussian \,\,rounding\,\, functions

[limn+s=2nζ(s)]=[limn+k=1n{O(2k)+O(2k+1)}]=0\displaystyle\left[\lim_{n\to+\infty}\sum_{s=2}^{n}\zeta(s)\right]= \left[\lim_{n\to+\infty}\sum_{k=1}^n\{\mathcal{O}(2k)+\mathcal{O}(2k+1)\}\right]=0

Considerfunctionscontainingα,fα(x)=1xα{\rm Consider\,\, functions \,\,containing\,\, \alpha}\,,\,\,{\color{red}\displaystyle f_{\alpha}(x)=\frac1{x^{\alpha}}}

limn+x=1nfα(x)=1+12α+13α+14α+\displaystyle\lim_{n\to+\infty}\sum_{x=1}^{n}f_{\alpha}(x)= 1+\frac1{2^{\alpha}}+\frac1{3^{\alpha}}+\frac1{4^{\alpha}}+\cdots

PrecisionpositiveintegerPforseekingtheexactvalue\rm Precision \,\,positive\,\, integer \,\,P\,\, for \,\,seeking\,\, the\,\, exact\,\, value


α>1\displaystyle\forall{\alpha\gt1}\,,N\,\displaystyle\exists N,s.t.limn+x=1nfα(x)x=1N1fα(x)=limn+x=Nnfα(x)10P\, s.t.\left|\displaystyle\lim_{n\to+\infty}\sum_{x=1}^{n}f_{{\alpha}}(x)-\sum_{x=1}^{N-1}f_{\alpha}(x)\right|=\displaystyle\lim_{n\to+\infty}\sum_{x=N}^{n}f_{\alpha}(x)\leq10^{-\rm P}

Forexample,πandγEuler\rm For\,\, example\,,\,\, \pi\,\, and \,\,{\color{red}\gamma}\,\,Euler-Mascheroniconstantcommonlyusedinnumbertheory\rm Mascheroni\,\, constant \,\,commonly\,\, used\,\, in\,\, number\,\, theory

π=3+126+326+526+726+926+=˙3.14159,πp=3.14(P=2)\,\displaystyle \pi=3+\displaystyle\frac{1^2}{6+\displaystyle\frac{3^2}{6+\displaystyle\frac{5^2}{6+\displaystyle\frac{7^2}{6+\displaystyle\frac{9^2}{6+\ddots}}}}}\,\dot{=}\,{\tt3.14159}\,\,\,,\,\,\,\,{\pi}_{p}={\tt3.14} \,\,\,\,\,\,(\,\rm P=2\,)


γ=limn+(k=1n1klnn)=˙0.577215664901532,γp=0.5772156(P=7)\,\displaystyle \gamma=\lim_{n\to+\infty}\left(\sum_{k=1}^n\frac1k-\ln n\right)\dot{=}\,{\tt0.577215664901532}\,\,\,,\,\,\,\,{\gamma}_{\,p}={\tt0.5772156} \,\,\,\,\,\,(\,\rm P=7\,)


UsingavalueoftocalculatetheeffectofNvaluesapproaching thetruevalue\rm Using \,\, a \,\,value\,\, of\,\, {\color{red}\triangledown} \,\,to \,\,calculate\,\, the\,\, effect\,\, of\,\, N \,\,values \,\,approaching\,\ the\,\, true\,\, value

=supNinfNsupN+infN\,\displaystyle {\triangledown}= \frac{_{\sup}\,{N}-_{\inf}{N}}{_{\sup}\,{N}+_{\inf}{N}}

Themeaningofisthedifferencebetweentheerrorintervalandtheestimatedvalue\rm The \,\,meaning\,\, of \,\,\triangledown\,\, is \,\,the\,\, difference\,\, between\,\, the\,\, error\,\, interval\,\, and \,\,the\,\, estimated\,\, value

c078f085294c4df8825394fc5963f126.png

Simpleandauthenticseriesscalingmethod\rm Simple \,\, and \,\,authentic\,\, series \,\,scaling\,\, method

1Nα1[ζ(α)1]limn+x=Nnfα(x)1Nα1(1+12α+)=1Nα1ζ(α)\displaystyle\frac1{N^{\alpha-1}}{\bigg[\zeta(\alpha)-1\bigg]}\leq\lim_{n\to+\infty}\sum_{x=N}^{n}f_{\alpha}(x)\leq\frac1{N^{\alpha-1}}\left(1+\frac1{2^\alpha}+\cdots\right)=\frac{1}{N^{\alpha-1}}\,\zeta(\alpha)


Solveinequalitiestoobtainsetsabout\rm Solve\,\, inequalities\,\, to\,\, obtain\,\, sets\,\, about\,\,NsimN_{\,\rm sim}

Nsim={xZ:[{ζ(α)1}10P]1α1x[ζ(α)10P]1α1}N_{\,\rm sim}=\left\{x\in\mathbb Z^{*}:\, \left [\{\zeta(\alpha)-1\}\cdot 10^{\rm P} \right]^\frac1{\alpha-1} \leq x\leq \left\lceil \left [\zeta(\alpha)\cdot 10^{\rm P} \right]^\frac1{\alpha-1} \right\rceil \right\}


ItseemsthatthevalueofwillfluctuategreatlywiththechangeofP\rm It\,\, seems\,\, that\,\, the \,\,value \,\,of\,\,\triangledown \,\,will\,\, fluctuate \,\,greatly\,\, with \,\,the\,\, change\,\, of\,\, P

sim=[ζ(α)10P]1α1[{ζ(α)1}10P]1α1[ζ(α)10P]1α1+[{ζ(α)1}10P]1α110P1α1[101α171α11]3[ζ(α)10P]1α1\triangledown_{\,\rm sim}=\displaystyle\frac{\left\lceil \left [\zeta(\alpha)\cdot 10^{\rm P} \right]^\frac1{\alpha-1} \right\rceil - \left [\{\zeta(\alpha)-1\}\cdot 10^{\rm P} \right]^\frac1{\alpha-1}}{\left\lceil \left [\zeta(\alpha)\cdot 10^{\rm P} \right]^\frac1{\alpha-1} \right\rceil + \left [\{\zeta(\alpha)-1\}\cdot 10^{\rm P} \right]^\frac1{\alpha-1}}\geq \frac{10^{\frac{P-1}{\alpha-1}}\left[10^{\frac1{\alpha-1}}-7^{\frac1{\alpha-1}}-1\right]}{3\left\lceil \left [\zeta(\alpha)\cdot 10^{\rm P} \right]^\frac1{\alpha-1} \right\rceil}

ApproachingthevalueoftheZetafunctionusinganintegralfunction\rm Approaching \,\,the \,\,value\,\, of \,\,the \,\,Zeta\,\, function\,\, using\,\, an \,\,integral\,\, function

e2b6ab3cf6a34035afc61b867afd6b2f.png

        TheHarmonyofRiemann:\rm The\,\, Harmony\,\, of \,\,Riemann:\,\,Srectangle_{\,\rm rectangle}\leq \,Sζ(s)integral\,_{\zeta(s)\,\rm integral}\leq \,Strapezoid_{\,\rm trapezoid}


k,integrablefunctionfα(k)havingfα(k)k1kfα(x)dx12(fα(k1)+fα(k)){\forall\,k \,,\,\,\rm integrable \,\,function \,\,}f_{{\alpha}}(k)\,\,{\rm having}\,\displaystyle\,\,\displaystyle f_{{\alpha}}(k)\leq\int_{k-1}^kf_{\alpha}(x)\,\mathrm{d}x\leq\frac12\bigg(f_{\alpha}(k-1)+f_{\alpha}(k)\bigg)

limn+x=Nnfα(x)N1+fα(x)dxlimn+x=Nnfα(x)+12fα(N1)\,\displaystyle\lim_{n\to+\infty}\sum_{x=N}^{n}f_{\alpha}(x)\leq\int_{N-1}^{+\infty}f_{\alpha}(x)\,\mathrm{d}x\leq\displaystyle\lim_{n\to+\infty}\sum_{x=N}^{n}f_{\alpha}(x)+\frac12f_{\alpha}(N-1)


Derivetheset\rm Derive \,\, the\,\, set\,\,NNfromtherelationshipbetweenintegralsandseries\,\,\rm from\,\, the \,\,relationship\,\, between\,\, integrals\,\, and\,\, series

Nintegral={xZ:2xαα110p2(x1)αx(10Pα1)1α1+1}N_{\,\rm integral}=\left\{x\in\mathbb Z^{*}: \displaystyle \frac{2x-\alpha}{\alpha-1}\cdot 10^{\,p}\leq2(x-1)^\alpha \, \bigcap\, x \leq \left\lceil\left(\displaystyle\frac{10^{P}}{{\alpha}-1}\right)^{\frac1{\alpha-1}}+1\right\rceil\right\}

Thelowerofset\rm The \,\,lower \,\,of\,\, set\,\,NNisdifficulttosolve,resultinginalargedeviationinintegral.\,\,\rm is\,\, difficult\,\, to\,\, solve\,,\,\, resulting\,\, in \,\,a \,\,large\,\, deviation\,\, in\,\, \triangledown_{{\rm integral}}\,_.

d944a6b86d3949ef83ac9f2b3f2f62eb.png

Function\rm Function\,\,fα(x)x=αfα+1(x)\displaystyle{\color{red}\frac{\partial\,f_{\alpha}(x)}{\partial\, x}}=-\alpha\cdot f_{\alpha+1}(x)\searrow,itsknownthatthefollowingequationholds\,,\,\rm it's\,\, known \,\,that\,\, the\,\, following\,\, equation \,\,holds

0d1f7290696d466c97d5a5b47a3f2257.png

Thinkaboutfittingfunctions\rm Think \,\,about\,\, fitting\,\, functions

{C(2k12)=1(2k12+ϑ)α=fα(k)S(k1)=1(k1+ϕ)α=fα(k){ϑ=12ϕ=1\displaystyle \left\{ \begin{array}{c} \mathcal{C}\left(\displaystyle\frac{2k-1}{2}\right)=\displaystyle\frac1{\left(\displaystyle\frac{2k-1}{2}+\vartheta\right)^\alpha}=f_\alpha(k)\\ \\ \mathcal{S}\left(\displaystyle k-1\right)=\displaystyle\frac1{\left(k-1+\phi\right)^\alpha}=f_{\alpha}(k) \end{array} \right.\,\,\Longrightarrow\,\,\,\,\,\,\left\{ \begin{array}{c} \vartheta=\displaystyle\frac{1}{2}\\ \\ \phi=\displaystyle{1}\\ \end{array} \right.


Sothefollowinginequalityholdstrue{\mathcal So}\,\,\rm the\,\, following\,\, inequality\,\, holds\,\, true

k1kfα(x+1)dxfα(k)k1kfα(x+12)dx\displaystyle{\displaystyle\int_{k-1}^k}f_{\alpha}(x+1)\,\mathrm{d}x\leq{\displaystyle f_{{\alpha}}(k)\leq\int_{k-1}^k}f_{\alpha}(x+\frac12)\,\mathrm{d}x


Sumupfunctionsandintegralsfrom\rm Sum \,\,up \,\,functions\,\, and\,\, integrals\,\, from\,\,NNton\rm \,\,to\,\, n\,(n+)(n\to+\infty)simultaneously\rm\,\,simultaneously

limn+N1nfα(x+1)dxlimn+x=Nnfα(x)limn+N1nfα(x+12)dx\,\displaystyle\lim_{n\to+\infty}\int_{N-1}^nf_{\alpha}(x+1)\,\mathrm{d}x\leq\lim_{n\to+\infty}\sum_{x=N}^{n}f_{\alpha}(x)\leq\displaystyle\lim_{n\to+\infty}\int_{N-1}^nf_{\alpha}(x+\frac12)\,\mathrm{d}x

Resolvetheinequalityabove\rm Resolve\,\, the \,\,inequality\,\, above

NmidIntegral={xZ:(10Pα1)1α1x(10Pα1)1α1+12}N_{\,\rm midIntegral}=\left\{x\in\mathbb Z^{*}: \displaystyle \left\lceil\left(\displaystyle\frac{10^{P}}{{\alpha}-1}\right)^{\frac1{\alpha-1}}\right\rceil \leq x \leq \left\lceil\left(\displaystyle\frac{10^{P}}{{\alpha}-1}\right)^{\frac1{\alpha-1}}+\frac12\right\rceil\right\}

Theminimumvaluethatsatisfiestheconditionisequalto\rm The\,\, minimum\,\, value\,\, that\,\, satisfies\,\, the\,\, condition \,\,is \,\,equal \,\,to\,\,infN_{\inf} \,Nor\,\,\rm or \,\,supN_{\sup}\,N\,.

midIntegral1(10Pα1)1α1\color{red}\triangledown_{\rm midIntegral}\displaystyle\leq\frac{1}{\left(\displaystyle\frac{10^{P}}{\displaystyle{\alpha}-1}\right)^{\frac1{\alpha-1}}}

Theexactvalueof\rm The \,\,exact\,\, value\,\, of \,\,NpreciseN_{\rm \,precise}

Nprecise={(10Pα1)1α1(10Pα1)1α1+12}N_{\rm \,precise} = \left\{ \displaystyle \left\lceil\left(\displaystyle\frac{10^{P}}{{\alpha}-1}\right)^{\frac1{\alpha-1}}\right\rceil\,{\lor}\,\, \displaystyle \left\lceil\left(\displaystyle\frac{10^{P}}{{\alpha}-1}\right)^{\frac1{\alpha-1}}+\frac12\right\rceil \right\}

最后一次编辑于 2025年04月14日 3

暂无评论

推荐阅读