学习资源
学习资源标签描述

开篇:什么是量化投资? 想象你是一个经验丰富的菜市场买菜高手。每次买菜时,你都有自己的一套"规则": 西红柿要挑红润饱满的 价格比平时低20%时大量采购 避开周末人多的时候去买 量化投资就是把这套"买菜经验"用代码写出来,让电脑帮你在股市里"买菜"。 传统投资靠感觉和经验,量化投资靠的是数据+规则+纪律执行。就像用GPS导航代替问路一样,虽然偶尔会绕路,但长期看更靠谱。 为什么从双均线开始? 双均线策略是量化投资的"九九乘法表",简单但包含了完整的投资逻辑: 趋势判断:短期均线长期均线...

<fontcolor="brown"一、背景</font Alpha101 <br Verycoarsely,onecanthinkofalphasignalsasbasedonmean-reversionormomentum. <fontcolor="red"大致来说,Alpha信号可基于均值回归或动量来理解。</font ![alpha150_proc.jpg](1) 量化交易作为金融市场的重要组成部分,在过去几十年中经历了显著的发展与演变。在这一领域,Alph...

<fontcolor="firebrick"一、背景</font Alpha101 <br Weemphasizethatthe101alphaswepresentherearenot‘toy’alphasbutreal-lifetradingalphasusedinproduction. <fontcolor="red"101个阿尔法因子并非用于理论研究的“玩具”因子,而是在实际交易中使用的真实因子。</font ![alpha511012.JPG](1) 此前,在《Alp...

延续上次对市场"状态转换逻辑"的探讨,我们知道识别市场状态固然重要,但真正的挑战在于如何快速执行。最近在学习天山老妖的QuantFabric教程([edu.csdn.net/learn/37051/572467](https://edu.csdn.net/learn/37051/572467?spm=1002.2001.3001.4157)),对高频交易系统的架构有了更深入的理解。 作为量化交易者,我们都知道速度和精确性的重要性。今天分享一下从教程中学到的QuantFabric系统架构,看看它如何通过精妙的设计和优化,帮助交易者在毫秒甚至纳秒间执行交易。 高频交易的核心需求 在高频交易的...

<fontcolor="brown"一、开篇</font <fontcolor="red"一切任务都可以抽象成一个工作流!</font ![01PandaAIlogo.png](1) 要踏入量化投资的复杂领域,本需艰难拼凑编程、交易实操、高阶数学、AI算法、金融市场等知识拼图。但掌握已专业定制的“工作流”这一核心绝技,就能直接复用专业投资者的经验路径——像搭积木般调用现成流程,把复杂任务拆解成清晰步骤,让新手也能快速对齐专业视角,少踩坑、少绕路,高效逼近量化投资的核心能力。 在20...

1.概述 这两天看到一个开源项目,[TradingAgents项目GitHub](https://github.com/TauricResearch/TradingAgents)还挺火的,下来来玩了玩,给大家分享下。 ![image.png](1) 这涨星的速度还是可以的。 2.安装 安装就看github上的readme页有介绍。 ![image.png](2) 先把各个库安装好,如果没有安装conda的,需要先安装下conda。 环境安装好之后,还需要设置KEY,一共有两个 ![im...

  AlphaSmith   2025年06月10日   132   0   0 学习资源经验分享

上次我们通过天山老妖的教程了解了QuantFabric的系统架构设计,从理论层面认识了这套高频交易系统。今天继续跟着教程的第二部分,看看这个系统在实际运行时是什么样子的。 如果说上一篇是在看"设计图纸",那么这一篇就是在看"驾驶舱"——一个真正运行中的量化交易系统,交易员每天面对的操作界面,以及系统背后各个组件是如何协同工作的。 从理论到实践的跨越 理论再完美,最终还是要落地到实际使用中。天山老妖在这个演示中,展示了一个完整的QuantFabric测试环境,让我们能够直观地看到: 行情数...

报告原文下载链接:https://pan.baidu.com/s/1vTlDC54x6ha8FSz6ERSaiA 提取码:gsjg 锚定效应是行为金融学的代表理论之一。投资者在进行股票投资时,往往会考虑股票过去的价格走势,比如将过去一年中的低点视为支撑位、过去一年中的高点视为压力位。当股价逼近过去高点时,“锚定投资者”会认为股价很难继续上涨至突破高点,因此很容易造成股票价格对其他利好消息的反应不足。 因此我们想利用创新高股票来获取超额收益,并在中证800股票池上测试。创新高股票定义:某只股票...

  18958283423   39分钟前   0   0   0 学习资源

一、标签 1.定义 标签是原始数据中直接观测到的底层属性,是分析的基础原材料。 2.核心特点 未经加工的自然记录(如数据库中的原始字段)。 可能包含无关变量,需筛选后才能用于建模。 3.示例 金融领域:股票每日收盘价、成交量、财务报表中的净利润。 其他领域:气温、犯罪率、冰淇淋销量。 二、特征 1.定义 特征是从标签中筛选或派生出的变量,与当前分析目标直接相关。 2.核心特点 是标签的子集或变换结果(如对数收益率、移动平均线)。 需经过业务逻辑过滤(如投资分析中排除“天气数据”)。 3.示...

  18958283423   2025年06月16日   63   1   1 新手入门学习资源经验分享

<fontcolor="firebrick"一、背景</font <fontcolor="red"Alpha101的核心是通过特征工程优化因子,以此简化模型构建并提升训练效率与效果。</font ![Alpha101main.JPG](1) Alpha101因子体系如同量化投资领域的一座宝藏,其中101个因子构成了众多投资策略的"地基",始终备受关注。 此前的两篇文章已深入拆解这些因子的设计逻辑及其预测市场走势的底层原理,可参考以下链接获取深度解析: [<fontcolor="pu...

工作流示例 为方便大家使用,我们提供了以下模版,供大家学习参考,新建一个工作流,直接拖对应的json到窗口中即可(json可找小助理领取),可以自己尝试修改参数和模型。 --- 直接收益率预测排序 🌟核心思路 利用XGBoost模型直接预测股票未来的收益率,并根据预测值进行排序和分组。 📌实施流程 1.输入因子矩阵![image.png](2) 2.使用XGBoost模型进行回归训练,输出预测值: ![image.png](3) 3.对预测收益率![image.png](4)进行排序...

1.概述 这篇文章我们将分享《中金公司-量化多因子系列(6):关于动量,你所希望了解的那些事》中关于动量因子的适用场景,研报中提到截面分域中,动量特征在高机构覆盖、大市值、低波动、高价值的股票池中更明显;而反转效果在低覆盖、小市值、高波动、低流动性、低价值的股票池内更为显著。本篇文章将使用PandaAI平台快速构建市值、波动性、流动性因子再叠加动量因子,验证研报中关于动量的结论。本文也算是线性多因子组合的入门教程,大家看完就明白一点都不难了。 2.市值因子 相信大家都听说过小市值策略,今天我们...

  AlphaSmith   2025年05月17日   177   2   2 新手入门学习资源代码分享

<fontcolor="brown"一、背景</font <fontcolor="red"谁是西蒙斯?</font ![夜景001.jpg](2) 2019年,我天天对着堆成山的财务报表加班,眼睛都快看花了。Excel和财务软件上跳动的数字突然变得陌生——难道我的人生就要永远困在这些冰冷的账目里?难道我就这样替人做利润表一辈子,自己的财务人生却还是空白? 想起大学时炒股的“黑历史”,看了两本技术指标书后,啥也不懂就瞎买,最后被割得干干净净,成了妥妥的韭菜。但心里一直藏着个梦想:...

以下是依据两篇研报因子的文字描述,通过deepseek/pandaai解读生成的Python代码实现,保留了AI生成过程和注释。意识到很多学员用户也正在做这个工作,为节约人力算力能源,在量变学院社群分享一下。 ![image.png](1) ![1748494420354.png](2) 这里是上篇《中金价量》的部分: 通过网盘分享的文件:alpha191中金量价_dspandaai(上).docx 链接:https://pan.baidu.com/s/1O9pvVkP_C_N54kbwAN...

  Cai   2025年05月29日   132   0   0 新手入门学习资源Python代码分享

1.概述 前段时间搭好了一个多因子框架,从几十个因子里面挑出了5个表现比较好的因子,先进行了MLP的训练,但是因为因子数据太少,模型基本上没学习到什么东西,迭代一次,损失就不再下降了。于是决定采用随机森林模型来训练,这个系列将把自己学习模型过程中的经验分享出来,与大家一同交流。大家都知道,随机森林是由若干决策树组成的,所谓几十个臭皮匠,顶个诸葛亮。那么本文就先分享决策树模型,我们将从零开始实现完整的代码。 2.决策树 我们以下面这个例子为例,假如我们要租房,需要根据西区还是东区以及房间的数量来...

<fontcolor="brown"一、开篇</font <fontcolor="orange"Lifeisshort,youneedPython!</font <fontcolor="red"人生苦短,我用Python!</font ![python之父.2.png](1) 文科生学习量化投资,确实存在诸多门槛。在前文提及的数理、代码、金融、交易这四个维度里,我觉得数理当属最为关键且难度最高的部分。毕竟里面有线性代数、统计、概率论、计量经济这些硬核内容,咱可以先Pass这部分。...