因子大赛
因子大赛

探讨因子的本质与检验方法 1.1探究的原因 因子、标签、特征是什么关系,我们买的到底是什么? 因子到底是什么,研究因子如何区别民科还是具备科学的方法? 因子如此重要如何正确的科学检验?因子分布如何看等等 GPlean到底该学什么因子?最后产出什么因子? 论坛都有各种复现和生成因子,不仅有中金的因子手册还有阿尔法101等等,但是归根结底因子到底是什么,其检验和实战意义暂时还没人讨论,在此我讲下我的一些理解,希望大家纠错,共同进步。 1.2因子、标签、特征的关系 1.首先是按照我们做机器学...

  ELVES   2025年06月20日   103   2   0 多因子模型因子大赛

对于刚转向因子投资的交易者,选择站在前辈肩膀上复现已有的研报因子是不可回避的学习途径。 PandaAI集成了数据/回测/分析框架及代码AI助手一体,为因子学习探索提供了极大便利。 2022年中金《价量因子手册》对于量价覆盖全面,不少量价因子在报告期和以后的很长时间均表现良好。 ![image.png](1) 刚开始尝试的是动量&反转因子: ![image.png](2) 构建方式和计算公式如下: ![image.png](3) 步骤如下: Step1:进入[pandaai因子大赛官...

  Cai   2025年05月18日   179   0   0 新手入门因子大赛活动与比赛

框架基本方法 基础方法说明 该策略为事件驱动性策略,需要实现框架中约定的事件回调方法,实现后回测、仿真、实盘通用。 策略头部需要默认引用内置API,代码为:frompanda_backtest.api.apiimport,后文不再重复赘述。 接下来具体介绍框架各个事件回调方法,必选代表必须在策略中实现。 策略初始化(必选) 函数:initialize 描述:策略初始化,主要用于初始化策略上下文中的变量,只在策略启动时运行一次 代码 python definitialize(context): 参数 |字段|类型|描述| |--|--|--| |context|Context...

上一篇文章中我们对高频因子的优势和类型做了简要介绍,从这篇文章开始,我们将对每一大类因子做介绍,并从中选取具体一例因子,实现从数据构建到测试评估的整个过程。 研究环境利用聚宽因子分析API,构建因子函数类;研究在日内高频分钟级数据中挖掘构建高频因子,并对该因子进行有效性检验。 一、动量反转因子 1.1动量反转因子 第一类因子为动量反转因子。动量反转因子通常由过去一段时间的特定类型的涨跌幅构造,其因子收益一方面可能来源于非理性投资者的行为偏差造成的错误定价,另一方面也可能来源于承担特定风险获得...

<fontcolor="brown"一、开篇</font <fontcolor="red"一切任务都可以抽象成一个工作流!</font ![01PandaAIlogo.png](1) 要踏入量化投资的复杂领域,本需艰难拼凑编程、交易实操、高阶数学、AI算法、金融市场等知识拼图。但掌握已专业定制的“工作流”这一核心绝技,就能直接复用专业投资者的经验路径——像搭积木般调用现成流程,把复杂任务拆解成清晰步骤,让新手也能快速对齐专业视角,少踩坑、少绕路,高效逼近量化投资的核心能力。 在20...

量化算子工具类使用文档 本文档汇总介绍了量化算子工具类(公式版)中所有函数的功能、输入/输出说明以及使用示例。所有函数均以静态方式提供,调用时直接使用函数名称,无需添加类名前缀。 示例中均采用如下调用格式,例如: python 返回收盘价序列 CLOSE python 返回CLOSE(收盘价)和VOLUME(成交量)的20日滚动相关性系数序列 CORRELATION(CLOSE,VOLUME,20) python 返回收盘价、最高价、最低价三者的均值序列 (CLOSE+HIGH+LOW)/3 --- 基础因子 |因子名|说明| |-|-| |CLOSE|收盘价| |OPE...

一因子原理 我们先明白一个原理,主力一定是在低位建仓,一定是在波动小的时候建仓,不会在暴跌,暴涨的票建仓,反之如果建仓,那之前被套的不就解套了?大资金就成接盘侠了。所以也产生了一个反人性的逻辑事实,就是是因为他们建仓,所以那里才成为低位。 二利用原理反推因子规则 接着前面的话说,要规避掉暴涨,暴跌的票子,那么就是在大盘里面找价格比较稳定的,赌主力要拉这个票,于是我让ai帮我写一个策略,就是找价格稳定的来投资,代码: classStabilityRankFactor(Factor): de...

一概述 市场对日频及以上频率的量价因子研究由来已久,也比较成熟。相对而言,高频因子研究较为新颖,拥挤度较低,有效性也较高。中金公司的研报《量化多因子系列12:高频因子手册》比较系统的介绍了高频因子的构建及表现,对于我们挖掘高频因子有较好的指导作用。 1.1高频因子的优势 高频因子主要是以股票日内交易价量、逐笔成交、逐笔委托以及分钟k线等数据为基础构建的。捕捉日内交易行为,维度更高,能刻画更精细的市场行为。相对中低频因子,高频因子的优势在于(1)信息含量更为丰富。高频数据量比低频数据大几个量...

工作流示例 为方便大家使用,我们提供了以下模版,供大家学习参考,新建一个工作流,直接拖对应的json到窗口中即可(json可找小助理领取),可以自己尝试修改参数和模型。 --- 直接收益率预测排序 🌟核心思路 利用XGBoost模型直接预测股票未来的收益率,并根据预测值进行排序和分组。 📌实施流程 1.输入因子矩阵![image.png](2) 2.使用XGBoost模型进行回归训练,输出预测值: ![image.png](3) 3.对预测收益率![image.png](4)进行排序...