1.概述 在过去,想要复现一篇多因子研究的研报往往是一项艰巨的任务。市面上缺乏成熟、统一的多因子研究平台,研究者不得不从零开始:自行下载数据、进行复杂的数据清洗、构建因子库,搭建因子评价体系,整个过程既耗时又容易出错。对于那些没有编程基础、但对量化投资充满兴趣的人来说,这几乎成为一道无法跨越的门槛。许多想入门的人因此望而却步,迟迟无法真正踏入量化研究的大门。 而如今,PandaAI的出现极大地降低了量化的门槛。它为因子研究提供了一个高效、统一、易用的平台,只需掌握一套简单的函数体系,就可以快...
1.概述 接上一篇,为什么在A股动量因子会呈现出反转特征呢?直接说答案,就是因为散户太多了。 这篇文章我们将分享《中金公司-量化多因子系列(6):关于动量,你所希望了解的那些事》提到的四类投资者,我们试着从投资者结构的角度出发去揭示反转特征,同时也思考作为个人,应该选择成为哪一个象限的投资者。 2.A股投资者结构下的四类典型投资者画像 在理解动量为何在A股呈现出“反转特性”之前,我们需要从投资者结构出发,分析不同类型投资者的行为模式及其对市场价格形成机制的影响。 我们可以从两个维度对投资者...
1.概述 这篇文章我们将分享《中金公司-量化多因子系列(6):关于动量,你所希望了解的那些事》中关于动量因子的适用场景,研报中提到截面分域中,动量特征在高机构覆盖、大市值、低波动、高价值的股票池中更明显;而反转效果在低覆盖、小市值、高波动、低流动性、低价值的股票池内更为显著。本篇文章将使用PandaAI平台快速构建市值、波动性、流动性因子再叠加动量因子,验证研报中关于动量的结论。本文也算是线性多因子组合的入门教程,大家看完就明白一点都不难了。 2.市值因子 相信大家都听说过小市值策略,今天我们...
对于刚转向因子投资的交易者,选择站在前辈肩膀上复现已有的研报因子是不可回避的学习途径。 PandaAI集成了数据/回测/分析框架及代码AI助手一体,为因子学习探索提供了极大便利。 2022年中金《价量因子手册》对于量价覆盖全面,不少量价因子在报告期和以后的很长时间均表现良好。  刚开始尝试的是动量&反转因子:  构建方式和计算公式如下:  步骤如下: Step1:进入[pandaai因子大赛官...
<br <center<fontface="华文行楷"size=6em量化关键指标详解与案例解析</font</center <br <fontface="华文行楷"size=4em一、$\rmSharpe$</font<fontface="华文行楷"color=greensize=4em(夏普比率)</font<br   $\sf1$.<fontface="华文行楷"size=4em定义</font    <fontface="华文行楷"size=4em夏普比率用于衡量投资组合每承受一单位总风险所获得的超额回报。它综合考虑了收益和风...
<br $\rmWe\,\,define\,\,a\,\,function\,\,{\mathcal{O}(k)}\,\,similar\,\,to\,\,the\,\,Riemann\,\,Zeta\,\,function\,\,\zeta(s)$ $$\mathcal{O(k)}=\displaystyle\lim_{n\to+\infty}\sum_{\tau=2}^n\frac1{\tau^{k}}\,\,\,\,\,\,\,\,\,\,\,\forall\,s\in\mathbb{...
以下是依据两篇研报因子的文字描述,通过deepseek/pandaai解读生成的Python代码实现,保留了AI生成过程和注释。意识到很多学员用户也正在做这个工作,为节约人力算力能源,在量变学院社群分享一下。   这里是上篇《中金价量》的部分: 通过网盘分享的文件:alpha191中金量价_dspandaai(上).docx 链接:https://pan.baidu.com/s/1O9pvVkP_C_N54kbwAN...