代码分享
代码分享标签描述

<fontcolor="brown"一、引言</font <fontcolor="red"Python的核心不是“炫技”,而是“实用”</font ![image.png](1) 到此,我们已探讨完Python核心且重要的知识点,涵盖数据结构、流程控制、函数用法、类与对象,以及Numpy、Pandas等常用库。而在本次“Python进阶2”的内容中,我们将进一步介绍Python的其他高级用法与科学计算库——不仅会讲解Python风格(Pythonic)及各类高级编程技巧,还会重点...

![5ddfdd5cfe5a3067ad10c1a2b22fe8e8.png](1) ![0fd28e1a1234eb293bfbdd770056175c.jpg](2)

  19520938347   2025年10月26日   493   0   0 代码分享经验分享量化策略

开篇:什么是量化投资? 想象你是一个经验丰富的菜市场买菜高手。每次买菜时,你都有自己的一套"规则": 西红柿要挑红润饱满的 价格比平时低20%时大量采购 避开周末人多的时候去买 量化投资就是把这套"买菜经验"用代码写出来,让电脑帮你在股市里"买菜"。 传统投资靠感觉和经验,量化投资靠的是数据+规则+纪律执行。就像用GPS导航代替问路一样,虽然偶尔会绕路,但长期看更靠谱。 为什么从双均线开始? 双均线策略是量化投资的"九九乘法表",简单但包含了完整的投资逻辑: 趋势判断:短期均线长期均线...

报告原文下载链接:https://pan.baidu.com/s/1ab9uNgS2Ydhimlu1jf5raA提取码:hgei 本篇研报以趋势资金为切入点:通过日内分钟级别的成交量来识别趋势资金,再通过对应的价、量数据推测其交易行为,构建有效的选股因子。该因子主要利用了市场的无效性,根据A股市场散户占比高,定价效率较低的特征,得出主力资金行为更容易产生超额收益机会这一结论,并将将主观交易经验(如“跟庄策略”)转化为可量化的指标。 由于获取数据上的限制,我在复现研报时只采用了2024-03-...

![dd68a3d1e29d2925e8b44c330f9a306c.png](1) ![9a2bb062fd23a6f3e8057bb1fd82b58e.jpg](2)

  19520938347   2025年11月04日   322   0   0 代码分享经验分享量化策略

<fontcolor="brown"一、引言</font <fontcolor="red"TheFutureofCodingis‘TabTabTab’</font ![image.png](1) OpenAI创始成员AndrejKarpathy曾说过:"编码的未来是按Tab键自动补全"。 Cursor的出现推动开发者角色从“编写代码”转向“引导AI生成正确代码”。未来编程将高度依赖AI自动化补全能力,开发者只需通过反复按“Tab键”即可快速生成代码。目前,Cursor、GitHub...

  我是宽客   2025年07月28日   1061   4   4 代码分享学习资源经验分享Python

量化算子工具类使用文档 本文档汇总介绍了因子编写方法量化算子工具类(公式版)中所有函数的功能、输入/输出说明以及使用示例。所有函数均以静态方式提供,调用时直接使用函数名称,无需添加类名前缀。 示例中均采用如下调用格式,例如: python 返回收盘价序列 CLOSE python 返回CLOSE(收盘价)和VOLUME(成交量)的20日滚动相关性系数序列 CORRELATION(CLOSE,VOLUME,20) python 返回收盘价、最高价、最低价三者的均值序列 (CLOSE+HIGH+LOW)/3 --- 基础因子 |因子名|说明| |-|-| |CLOSE|收盘价...

为什么改造gplearn 1. 框架简洁代码精炼。之前被Qlib深度折磨过(以前文章写过https://www.pandaai.online/community/article/130)。Qlib投研全流程环节多模块多,而后期可能提交维护投入变少越来越臃肿。gplearn就是['genetic','functions','program','fitness'],然后再加上一基础设施'utility'五个部分。核心因子公式program的遗传变异进化操作就是围绕着一个list列表对象实现的(再次...

![3fc897d904115841a5544041402da230.jpg](1) ![1cc685c15875f942d958b192ca0ae1c2.jpg](2)

报告原文下载链接:https://pan.baidu.com/s/1xPDtXF138Q6bGZ4CxoTd7g提取码:dy4o 在这篇研报中,标签为每日开盘价、每日收盘价、每日换手率、指数隔夜涨跌幅等未经加工的底层市场数据。特征为传统隔夜涨跌幅、隔夜涨跌幅绝对值、超额隔夜涨跌幅、超额换手率、滚动相关性等从原始标签中提取或计算出的尚未验证预测能力的中间变量。因子为传统隔夜因子、隔夜跳空因子、新因子MIF等对收益率有显著解释力的特征。 本篇研报的核心与上一篇研报相同,都是利用A股市场的非有效性...

一、参与背景:为何加入PandaAI种子用户计划 当我看到PandaAI发布的"仿真实盘种子用户招募"计划时,立刻被其中"定义量化新工具"的愿景所吸引。与普通产品内测不同,这次招募明确提出寻找"战友"而非单纯"用户",强调与真正沉心做策略、懂交易的实践者共同打磨下一代量化工具。这种共创模式让我对PandaAI团队的专业态度产生信任,于是毫不犹豫地提交了申请。 作为有一定量化交易经验的参与者,我特别看重计划中提到的几大专属权益:5000+初始算力包可无门槛支持策略回测和仿真实盘交易;产品共建者身份能让建议直达产品核心团队;还有与产品团队、资深策略开发者同群交流的机会。这些权益不仅实用,更体现出P...

框架基本方法 基础方法说明 该策略为事件驱动性策略,需要实现框架中约定的事件回调方法,实现后回测、仿真、实盘通用。 策略头部需要默认引用内置API,运行代码为:frompanda_backtest.api.apiimport,后文不再重复赘述。 注意事项:工作流里使用下单函数时要在代码里引用frompanda_backtest.api.apiimporttarget_future_group_order,buy_open,sell_open,buy_close,sell_close 仿真盘里绑定工作流下单时要改为引用frompanda_trading.trading_common.api...

上一篇文章中我们对高频因子的优势和类型做了简要介绍,从这篇文章开始,我们将对每一大类因子做介绍,并从中选取具体一例因子,实现从数据构建到测试评估的整个过程。 研究环境利用聚宽因子分析API,构建因子函数类;研究在日内高频分钟级数据中挖掘构建高频因子,并对该因子进行有效性检验。 一、动量反转因子 1.1动量反转因子 第一类因子为动量反转因子。动量反转因子通常由过去一段时间的特定类型的涨跌幅构造,其因子收益一方面可能来源于非理性投资者的行为偏差造成的错误定价,另一方面也可能来源于承担特定风险获得...

以下是依据两篇研报因子的文字描述,通过deepseek/pandaai解读生成的Python代码实现,保留了AI生成过程和注释。意识到很多学员用户也正在做这个工作,为节约人力算力能源,在量变学院社群分享一下。 ![image.png](1) ![1748494420354.png](2) 这里是上篇《中金价量》的部分: 通过网盘分享的文件:alpha191中金量价_dspandaai(上).docx 链接:https://pan.baidu.com/s/1O9pvVkP_C_N54kbwAN...

  Cai   2025年05月29日   694   0   0 代码分享学习资源Python新手入门

一、引言 在量化分析领域,因子库的有效构建与管理是实现精准投资决策的核心环节。为满足因子数据存储与高效分析的需求,选择合适的数据库至关重要。本文专注于本地MongoDB数据库的搭建,以及Python在该数据库配置与因子数据处理中的应用,旨在为量化分析过程中因子库的本地化配置提供系统性的解决方案。 ![imag001.JPG](1) 二、MongoDB用于多因子分析的优势 传统的关系型数据库就像一个个整齐排列的小格子房间,每个房间的大小、形状都得提前规定好,东西得规规矩矩地放进去。而Mongo...

上一篇文章我们介绍了高频因子的波动率类因子,这一篇继续介绍高阶特征因子,并在因子分析的基础上加入策略回测。 研究环境利用聚宽因子分析API,构建因子函数类;研究在日内高频分钟级数据中挖掘构建高频因子,对该因子进行有效性检验,并利用回测平台进行回测。 一高阶特征因子 1.1构建方法 第三大类因子为高阶特征因子。高阶特征利用股票高阶矩与其未来收益建立联系,刻画日内价格分布以及快速变化的特征,能够有效反映价格的除动量和波动率这样一阶和二阶特征外更高阶的特征。 ![pic1.png](1) 将分...

![bcc3db2cf262f73ff57bbd6229545bab.png](1) ![b7c475b6ed8d981153df75ee8511968e.jpg](2)

  19520938347   2025年10月21日   338   0   3 代码分享新手入门量化策略