高频交易
高频交易标签描述

概述 因为高频数据量非常大,若要进行多年度的回测需要大量的时间计算,所以我采用先计算因子值,计算完之后再执行回测,本篇主要分享可以优化的方向以及一些高频数据预处理的发现。 1.高频因子特点 相比低频因子IC半衰期更短![螢幕擷取畫面20250622150117.png](1) 需要更高频的调仓(如日频),带来换手率的增加,但基金业绩表明,即使高频因子的换手率更高,但高频因子的信息收益在合适的控制下仍然高于高换手率的成本 Level2级的数据资讯更多但同时也有更大的噪声 本系列将依照高频数据低频...

上一篇文章中我们对高频因子的优势和类型做了简要介绍,从这篇文章开始,我们将对每一大类因子做介绍,并从中选取具体一例因子,实现从数据构建到测试评估的整个过程。 研究环境利用聚宽因子分析API,构建因子函数类;研究在日内高频分钟级数据中挖掘构建高频因子,并对该因子进行有效性检验。 一、动量反转因子 1.1动量反转因子 第一类因子为动量反转因子。动量反转因子通常由过去一段时间的特定类型的涨跌幅构造,其因子收益一方面可能来源于非理性投资者的行为偏差造成的错误定价,另一方面也可能来源于承担特定风险获得...

延续上次对市场"状态转换逻辑"的探讨,我们知道识别市场状态固然重要,但真正的挑战在于如何快速执行。最近在学习天山老妖的QuantFabric教程([edu.csdn.net/learn/37051/572467](https://edu.csdn.net/learn/37051/572467?spm=1002.2001.3001.4157)),对高频交易系统的架构有了更深入的理解。 作为量化交易者,我们都知道速度和精确性的重要性。今天分享一下从教程中学到的QuantFabric系统架构,看看它如何通过精妙的设计和优化,帮助交易者在毫秒甚至纳秒间执行交易。 高频交易的核心需求 在高频交易的...

上次我们通过天山老妖的教程了解了QuantFabric的系统架构设计,从理论层面认识了这套高频交易系统。今天继续跟着教程的第二部分,看看这个系统在实际运行时是什么样子的。 如果说上一篇是在看"设计图纸",那么这一篇就是在看"驾驶舱"——一个真正运行中的量化交易系统,交易员每天面对的操作界面,以及系统背后各个组件是如何协同工作的。 从理论到实践的跨越 理论再完美,最终还是要落地到实际使用中。天山老妖在这个演示中,展示了一个完整的QuantFabric测试环境,让我们能够直观地看到: 行情数...

一概述 市场对日频及以上频率的量价因子研究由来已久,也比较成熟。相对而言,高频因子研究较为新颖,拥挤度较低,有效性也较高。中金公司的研报《量化多因子系列12:高频因子手册》比较系统的介绍了高频因子的构建及表现,对于我们挖掘高频因子有较好的指导作用。 1.1高频因子的优势 高频因子主要是以股票日内交易价量、逐笔成交、逐笔委托以及分钟k线等数据为基础构建的。捕捉日内交易行为,维度更高,能刻画更精细的市场行为。相对中低频因子,高频因子的优势在于(1)信息含量更为丰富。高频数据量比低频数据大几个量...

引言 在Niederhoffer和Osborne的证券交易所的市场做市与价格反转(1996)一文中,作者通过观察并举例股票价格在连续交易的变动ΔYt-1,ΔYt试图寻找在时序上的运动规律,并且得出如股票价格的短期波动并非完全随机,而是由市场制造机制和投资者行为共同塑造等结论。其中,作者认为股票价格在高频数据中存在显著的负自相关特性,即前一期价格ΔYt-1上涨会增加本期ΔYt下跌的概率,反之亦然。作者将这种现象归因于交易所做市商制度和限价订单簿的非均匀分布等市场微观结构因素。另外一个相对更近期的例...