背景 最近在小安老师建议下做端到端阿尔法模型的构建复现,踩了不少坑,也有一些收获。这篇文章是结合招商证券那篇《端到端的动态Alpha模型》研报的第一部分,以及我自己的实践经验整理出来的,顺便附了我画的图来梳理结构。 一、线性因子模型逐渐失效了? 研报里其实讲得很清楚,线性模型的问题并不只是过时这么简单,而是它在理论假设上就有点站不住脚。比如APT模型假设资产收益率和因子之间是线性关系,而且残差是独立同分布的、无异方差的。但现实中的金融市场,残差往往具有强烈的异方差性和截面相关性。 这也...
报告原文下载链接:https://pan.baidu.com/s/1ab9uNgS2Ydhimlu1jf5raA提取码:hgei 本篇研报以趋势资金为切入点:通过日内分钟级别的成交量来识别趋势资金,再通过对应的价、量数据推测其交易行为,构建有效的选股因子。该因子主要利用了市场的无效性,根据A股市场散户占比高,定价效率较低的特征,得出主力资金行为更容易产生超额收益机会这一结论,并将将主观交易经验(如“跟庄策略”)转化为可量化的指标。 由于获取数据上的限制,我在复现研报时只采用了2024-03-...
框架基本方法 基础方法说明 该策略为事件驱动性策略,需要实现框架中约定的事件回调方法,实现后回测、仿真、实盘通用。 策略头部需要默认引用内置API,代码为:frompanda_backtest.api.apiimport,后文不再重复赘述。 接下来具体介绍框架各个事件回调方法,必选代表必须在策略中实现。 策略初始化(必选) 函数:initialize 描述:策略初始化,主要用于初始化策略上下文中的变量,只在策略启动时运行一次 代码 python definitialize(context): 参数 |字段|类型|描述| |--|--|--| |context|Context...
上一篇文章我们介绍了高频因子的动量反转类因子,这一篇继续介绍波动率因子,并在因子分析的基础上加入策略回测。 研究环境利用聚宽因子分析API,构建因子函数类;研究在日内高频分钟级数据中挖掘构建高频因子,对该因子进行有效性检验,并利用回测平台进行回测。 一波动率因子 1.1波动率因子构建 第二大类因子为波动率因子。波动率因子刻画了股票价格或股票收益在过去一段时间的不确定性程度,高波动率通常反映其不确定性程度较高,未来收益表现可能相对较弱。  将传统的收益波动、振...
最近几年在做量化研究时,我有一个很深的感受:A股市场正在发生一些根本性的变化。以前那种靠题材炒作、概念驱动的投资方式越来越难赚钱了,反而是一些基本面扎实的公司开始受到资金青睐。 这种变化背后有两个很重要的推手。第一个是外资的持续流入。我记得2016年刚开始关注北上资金的时候,很多人还把它当作一个短期的资金流向指标来看。但现在回头看,外资买入的逻辑其实很清晰:ROE高、现金流好、行业地位稳固的龙头公司。这些公司可能不是最sexy的,但确实是最赚钱的。 第二个推手是监管层面的变化。2020年的退...
一引言 本文基于下述研究框架撰写: [基于机器学习的多因子选股策略](https://www.joinquant.com/view/community/detail/7a63b350815f79bfd4d83ab22d0f291a?type=4) 1.1研究背景 当前市场处于经济弱复苏、流动性宽松与高波动并存的复杂环境之下。投资者对收益的需求与对风险的规避形成张力,使得策略分化格局愈加明显。在这样的市场背景下,小市值股票凭借其高弹性在反弹行情中具备出色的表现潜力,而红利低波股票则依靠其高分红特...