Python
Python标签描述

1.概述 在计算完因子数据之后,进行下一步的模型训练之前,通常需要对因子数据进行预处理,以及中性化处理。其中预处理比较简单,一般就是3倍MAD截断,zscore标准化,缺失值填充为0。中性化稍微复杂一些,本文将从市值中性化开始介绍如何进行市值中性化,下一篇将介绍如何进行行业中性化。 2.市值中性化 2.1市值中性化的必要性与逻辑 市值中性化是因子中性化处理中最常见且重要的一种,其核心目的是剔除因子值中由于市值(Size)因素引起的系统性影响,使得因子能够更纯粹地反映其自身的信息,从而提升因...

  AlphaSmith   2025年06月06日   523   2   2 Python数据清洗新手入门经验分享

开篇:什么是量化投资? 想象你是一个经验丰富的菜市场买菜高手。每次买菜时,你都有自己的一套"规则": 西红柿要挑红润饱满的 价格比平时低20%时大量采购 避开周末人多的时候去买 量化投资就是把这套"买菜经验"用代码写出来,让电脑帮你在股市里"买菜"。 传统投资靠感觉和经验,量化投资靠的是数据+规则+纪律执行。就像用GPS导航代替问路一样,虽然偶尔会绕路,但长期看更靠谱。 为什么从双均线开始? 双均线策略是量化投资的"九九乘法表",简单但包含了完整的投资逻辑: 趋势判断:短期均线长期均线...

1.概述 行业中性化(IndustryNeutralization)旨在从因子中剔除行业所带来的系统性偏差,使因子能够更真实地反映个股的特质(idiosyncraticcharacteristics)。许多因子天然地与特定行业相关联,比如市盈率因子在金融行业普遍较低,而在科技行业可能较高。 行业中性化通常通过分行业去均值或引入行业哑变量回归等方式实现,处理后因子值在行业间趋于均衡,从而避免策略因行业偏好而产生非预期的暴露。经过行业中性化处理的因子,更具普适性和解释力,在多因子模型、因子排序及回...

  AlphaSmith   2025年06月07日   662   1   2 Python数据清洗新手入门经验分享

报告原文下载链接:https://pan.baidu.com/s/1ab9uNgS2Ydhimlu1jf5raA提取码:hgei 本篇研报以趋势资金为切入点:通过日内分钟级别的成交量来识别趋势资金,再通过对应的价、量数据推测其交易行为,构建有效的选股因子。该因子主要利用了市场的无效性,根据A股市场散户占比高,定价效率较低的特征,得出主力资金行为更容易产生超额收益机会这一结论,并将将主观交易经验(如“跟庄策略”)转化为可量化的指标。 由于获取数据上的限制,我在复现研报时只采用了2024-03-...

上一篇文章我们介绍了高频因子的动量反转类因子,这一篇继续介绍波动率因子,并在因子分析的基础上加入策略回测。 研究环境利用聚宽因子分析API,构建因子函数类;研究在日内高频分钟级数据中挖掘构建高频因子,对该因子进行有效性检验,并利用回测平台进行回测。 一波动率因子 1.1波动率因子构建 第二大类因子为波动率因子。波动率因子刻画了股票价格或股票收益在过去一段时间的不确定性程度,高波动率通常反映其不确定性程度较高,未来收益表现可能相对较弱。 ![pic1.png](1) 将传统的收益波动、振...

一因子原理 我们先明白一个原理,主力一定是在低位建仓,一定是在波动小的时候建仓,不会在暴跌,暴涨的票建仓,反之如果建仓,那之前被套的不就解套了?大资金就成接盘侠了。所以也产生了一个反人性的逻辑事实,就是是因为他们建仓,所以那里才成为低位。 二利用原理反推因子规则 接着前面的话说,要规避掉暴涨,暴跌的票子,那么就是在大盘里面找价格比较稳定的,赌主力要拉这个票,于是我让ai帮我写一个策略,就是找价格稳定的来投资,代码: classStabilityRankFactor(Factor): de...

报告原文下载链接:https://pan.baidu.com/s/1xPDtXF138Q6bGZ4CxoTd7g提取码:dy4o 在这篇研报中,标签为每日开盘价、每日收盘价、每日换手率、指数隔夜涨跌幅等未经加工的底层市场数据。特征为传统隔夜涨跌幅、隔夜涨跌幅绝对值、超额隔夜涨跌幅、超额换手率、滚动相关性等从原始标签中提取或计算出的尚未验证预测能力的中间变量。因子为传统隔夜因子、隔夜跳空因子、新因子MIF等对收益率有显著解释力的特征。 本篇研报的核心与上一篇研报相同,都是利用A股市场的非有效性...

1.引言 招商证券发布的这篇研究报告《AI系列研究之一:端到端的动态Alpha模型》探讨了一种基于深度神经网络的动态Alpha因子模型,旨在解决传统线性Alpha模型的局限性。这项研究不仅展示了机器学习在量化金融领域的应用,也为投资决策提供了新的思路和方法。本文将详细分析报告中提出的模型架构、实验设计、创新点以及实际效果。 2.传统因子投资框架及其局限性 2.1传统多因子Alpha模型的构建流程 传统的多因子Alpha模型构建一般包括以下步骤: 单因子研究与筛选 因子预处理(异常值处理、标准...

上篇[基于《AI系列研究之一:端到端的动态Alpha模型》理论分析](https://www.pandaai.online/community/article/77) 本篇文章会对其中各部分进行代码研究 大概流程划分为下 ![1.png](1) 数据清洗 目的 保证输入数据的质量,剔除不符合要求的样本。 减少后续特征工程和模型训练的偏差。 过滤掉ST和退市股,可避免模型学到噪声或极端异常;空值剔除确保计算指标和归一化不出错。 python defget_all_stocks(self,e...

  Co   2025年05月12日   410   0   4 Python历史数据机器学习

上一篇文章中我们对高频因子的优势和类型做了简要介绍,从这篇文章开始,我们将对每一大类因子做介绍,并从中选取具体一例因子,实现从数据构建到测试评估的整个过程。 研究环境利用聚宽因子分析API,构建因子函数类;研究在日内高频分钟级数据中挖掘构建高频因子,并对该因子进行有效性检验。 一、动量反转因子 1.1动量反转因子 第一类因子为动量反转因子。动量反转因子通常由过去一段时间的特定类型的涨跌幅构造,其因子收益一方面可能来源于非理性投资者的行为偏差造成的错误定价,另一方面也可能来源于承担特定风险获得...

以下是依据两篇研报因子的文字描述,通过deepseek/pandaai解读生成的Python代码实现,保留了AI生成过程和注释。意识到很多学员用户也正在做这个工作,为节约人力算力能源,在量变学院社群分享一下。 ![image.png](1) ![1748494420354.png](2) 这里是上篇《中金价量》的部分: 通过网盘分享的文件:alpha191中金量价_dspandaai(上).docx 链接:https://pan.baidu.com/s/1O9pvVkP_C_N54kbwAN...

  Cai   2025年05月29日   465   0   0 Python学习资源代码分享新手入门

引言 招商证券的这份研究报告代表了传统金融机构在人工智能应用领域的重要探索。作为AI系列研究的第二篇,该报告聚焦于多模型集成技术在量价Alpha策略中的应用,为量化投资提供了一套完整的技术解决方案。 通过深入研读,我发现这份报告最大的价值在于其模型选择的系统性思考和集成策略的实用性设计,为行业提供了宝贵的方法论参考。 --- 第一部分:为什么需要多模型集成? 1.1传统单一模型的根本局限 在量化投资领域,单一模型面临着无法克服的结构性缺陷: 预测精度的天花板效应 即使是最先进的单...

  Co   2025年06月03日   318   1   0 Python机器学习模型经验分享机器学习c#

上篇[基于《AI系列研究之二:多模型集成量价Alpha策略》理论分析](https://www.pandaai.online/community/article/90) 本篇文章会对其中各部分进行代码研究 项目需求分析与技术架构设计 业务需求梳理 项目的核心目标是构建一个多模型股票预测系统,具体需求包括: 数据层面的要求: 股票池:全A股票市场,但需要剔除ST、ST股票、退市股票以及上市不满三个月的新股 数据源:使用数据库中的日线量价数据,包含高开低收价格、成交量以及市值信息 预测目标:T+1日至T+11日的复权日内VWAP价格收益率 数据预处理:采用3倍MAD截断、zscore标...

  Co   2025年06月03日   314   1   1 Python机器学习模型机器学习c#

一、引言 在量化分析领域,因子库的有效构建与管理是实现精准投资决策的核心环节。为满足因子数据存储与高效分析的需求,选择合适的数据库至关重要。本文专注于本地MongoDB数据库的搭建,以及Python在该数据库配置与因子数据处理中的应用,旨在为量化分析过程中因子库的本地化配置提供系统性的解决方案。 ![imag001.JPG](1) 二、MongoDB用于多因子分析的优势 传统的关系型数据库就像一个个整齐排列的小格子房间,每个房间的大小、形状都得提前规定好,东西得规规矩矩地放进去。而Mongo...

1.概述 笔者最近搭建了一套因子库,参考的是《20230522-招商证券-AI系列研究之一:端到端的动态Alpha模型》附录中的因子,但因子数量还是有限,于是决定引入一些常见的因子库,本文将分享如何用cursor来帮我们快速生成alpha101因子。 2.cursor安装与激活 从官网下载cursor,新注册的用户有免费的使用次数,如果次数用完,可以到某宝上去购买账户,也可以自己充值。 ![image.png](1) 安装好之后,就可以在右边打开对话框,进行对话式编程了,选择@可以指定代码...

1.概述 平时大家搭建自己的因子库,肯定要会涉及到行情数据的下载,因子库的计算入库等工作,股票数据相对来说数量比较大,更新一次需要不少时间,本文将分享如何通过多线程的方式加快数据的下载,以此为例,也可以扩展到其他大数据任务的计算中。 本文使用Tushare作为数据源,下载A股市场所有股票的日线数据(open,high,low,close,vol),我们将分析串行跟并行两种方法在时间效率上的表现。 2.串行下载 串行下载是最直观的实现方式,按顺序逐个处理每只股票的数据下载请求。注册好tushar...

  AlphaSmith   2025年06月05日   270   2   1 Python新手入门经验分享数据存储