精通AI、CV、NLP、pytorch、HFT和python。 
PandaAI的第一周内侧体验 作为一个5年的主观交易员,在听到量化交易可以模块化进行研究回测,我是不太相信的。但是当我打开pandaAI的网页以后,颠覆了我对量化交易的认知。之后就加入pandaAI的群聊,也拿到了内侧名额。所以我来聊聊拿到了内侧名额后的第一周体验。 1.1操作体验 如你所见,内置了很多模块化的设计(如果你有编程基础,也可以自定义),也有很多机器学习的模型。之前我自学了一点机器学习和Python的入门课程,当然是偏向于理论的,但实践能力一直很差。虽然花费了大量时间练习,但也很...
为什么改造gplearn 1. 框架简洁代码精炼。之前被Qlib深度折磨过(以前文章写过https://www.pandaai.online/community/article/130)。Qlib投研全流程环节多模块多,而后期可能提交维护投入变少越来越臃肿。gplearn就是['genetic','functions','program','fitness'],然后再加上一基础设施'utility'五个部分。核心因子公式program的遗传变异进化操作就是围绕着一个list列表对象实现的(再次...
一般投研写代码开始,环境会固定下来,生产时的环境更是如此。但是一旦需要新建更新迁移环境,添加删除更新相关的库,还是会耗费不少时间精力。我写几个目前为止可能有用的实践经验。 管理工具 conda用于环境创建管理是最好,对库的安装管理就未必(确实比较慢)。pip的资源最全面,较新mamba的管理也很全面,逻辑更优化速度会快很多。 库源 就我们金融量化领域最重的几个库源:-cconda-forge-cpytorch还有英伟达。 添加到默认路径里condaconfig--addchannels-conda-forge 如果慢,可以把清华和阿里的也添加进去,但优先级设置低一点。 安装更新 确定本次...
<fontcolor="brown"一、引言</font <fontcolor="red"文科生学量化需要学编程吗?</font  上次我们已经学习了Python安装与配置的相关内容。这次将运用已学的编程知识,简要介绍Python的4个基础模块:数据结构、流程控制、函数用法、类与对象。在开启编程学习之旅前,我们需要明确为什么要学编程,以及该怎么学。 <fontcolor="brown"二、编程</font <fontcolor="darkblue"为什...
上一篇文章我们介绍了高频因子的高阶特征因子,这一篇继续介绍流动性因子、量价相关性因子,并在因子分析的基础上加入策略回测。 研究环境利用聚宽因子分析API,构建因子函数类;研究在日内高频分钟级数据中挖掘构建高频因子,对该因子进行有效性检验,并利用回测平台进行回测。 一流动性因子 1.1因子介绍 第四大类因子为流动性因子。流动性刻画股票交易所需要的时间和成本,一般来说,流动性较差的个股通常有更高的预期收益,这是对流动性风险的风险补偿。因此,流动性因子通常表现为流动性越低,未来收益越高的特征(也会...
⭐️内测心得 最近拿到PandaAI量化平台的内测名额,抱着试试看的心态把从策略导入到仿真实盘的流程完整走了一遍。说实话,之前折腾过几个平台,要么环境搭半天,要么界面找半天按钮,这次是真的有点惊喜——整个过程顺得让我怀疑“量化还能这么简单?” 最爽的就是这流程顺畅多了:模板一拖就进来,想改两行参数点几下就存好,接着建个仿真账户、划点钱进去,一键开跑,日志和成交记录直接就出来了。以前手动交易的时候,得一直守着屏幕,怕错过信号,一天下来眼睛累得不行;现在全让策略自己跑,看着它该下单就下单、该平就...
PandaAI20251215内测实录Day1 1.1实盘截图 Day1;  1.2相关ERROR的类型以及解决方法Day1 笔者发现工作流或者代码报错,没有相应的错误指南,因此记录下自己遇到的错误类型及解决办法,仅供参考 1.ERRO...
一错误类型 1.1工作流错误类型 1.时间格式不匹配; ERROR2025/12/1514:00:41 节点执行异常:1validationerrorforStockBacktestInputModelValueerror,unconverteddataremains:[type=value_error,input_value={'code':'frompanda_back...84654rowsx3columns]},input_type=dict]Forfurtherinformationvisithttps://errors.pydantic.dev/2.11/v/value_erro...
<fontcolor="brown"一、引言</font <fontcolor="red"Python是一种“胶水语言”,能够整合多种库与工具!</font  Python是“胶水语言”,能够将各种不同的库和工具粘合在一起,创造出强大的解决方案。 在上一次的介绍中,我们已经讲解了Python基础的4个模块(数据结构、流程控制、函数用法、面向对象);本次将聚焦Python的进阶使用方法,以及数据分析领域的核心工具库。对于刚开始接触量化分析或数据分析初...
概述 最近由于Tushare服务故障,导致无法获取到行情数据,捉急之下,笔者想起miniqmt也是可以获取数据的,而且还能拿到一年的分钟频率数据,刚好最近也想着复现下高频数据的研报。那么,下面笔者就简单介绍下miniqmt如何获取数据。 1.开通账户 在使用miniqmt之前,需要找券商开通相关的服务,各位可以联系pandaai官方小助手,他们有开通的渠道,一般审核验证大概2-3个工作日就差不多了。开通成功之后,对接人员也会给相应的教程,指导如何使用,大家开通之后,直接参考教程即可。 2.数...
一、引言 近年来,随着中国资本市场的快速发展和机构化程度的不断提升,因子投资(FactorInvesting)逐渐成为量化研究的重要方向。其中,小市值因子(SizeFactor)与红利低波因子(Dividend&LowVolatilityFactor)是最为典型的两类策略,分别代表着成长性与稳健性的两种投资风格。 小市值策略依靠规模较小企业的成长潜力,在市场复苏与扩张阶段往往能够获得较高的超额收益。然而,小市值股票普遍流动性不足、业绩波动较大,导致其在市场下行阶段容易出现剧烈回撤。与之形成对照的...
内测 官方给的指导很具体,按照官方给的指导文档或视频教程,很顺利的完成了仿真实测。 1.1策略编写 有AI帮助,让策略编写更简单  1.2添加仿真账号 策略编写完成后,运行。然后到超级图标页面添加仿真账号。添加好后绑定上面写的策略,点击运行,即可自动交易了。  1.3入金 
上一篇文章我们介绍了高频因子的流动性因子、量价相关性因子,这一篇继续介绍筹码分布因子,并在因子分析的基础上加入策略回测。 研究环境利用聚宽因子分析API,构建因子函数类;研究在日内高频分钟级数据中挖掘构建高频因子,对该因子进行有效性检验,并利用回测平台进行回测。 一筹码分布因子 1.1因子介绍 第六大类因子为筹码分布因子。筹码分布旨在刻画股票持有人的持仓成本分布情况。筹码分布能够直观地展示不同价格区间上的持仓数量,从而帮助投资者判断市场的平均持仓成本。如果大部分筹码集中在较低的价格区间,说...
在PandaAI上的第一次量化尝试 在PandaAI(pandai)上尝试了次平台上的“从0到1”的量化尝试:不追求多复杂,先把一套能跑、能看、能回测的策略搭起来。这里记录一下我的第一手体验 总的来说,有如下一些优点 -写代码的地方、看效果的地方、做执行的地方,基本都能在一个平台里闭环。 -可以使用平台的ai助手直接修改交易代码,目前主要py,看起来一些小的功能和改动都是正常的。 -整个平台依托于远程网页,可以在任意有电脑的地点登录,将一般自己部署vps之类的与交易相关不多的都屏蔽了。专注交易。 后续我继续试用,看看策略具体的一些运行效果,以及调试迭代过程中继续体验
一、引言 1.1研究背景 在金融投研领域,量化投资已成为不可或缺的一部分,它通过数学模型和计算机算法来执行交易决策,极大地提高了投资效率和准确性。 本文旨在为那些希望踏入量化投资领域,但缺乏技术基础的投资者提供一个全面的技术因子整理框架。我们将详细解析各类技术指标因子的计算方法及其在市场分析中的应用,帮助投资者构建坚实的量化投资基础。 1.2研究目的与范围 核心目的:构建一套可直接复用的技术因子计算框架,明确各类因子的“计算逻辑→应用场景→信号含义”,避免投资者陷入“指标堆砌”的误区。 研究范围:聚焦技术面因子(不涉及基本面因子如PE、ROE),覆盖8大类指标(移动平均线类、趋势指标、动量指标...
[内测心得】AI助力轻松实现策略 1新建策略 遵循官方指南添加策略模板后,只需向PandaAI助手清晰阐述你的策略逻辑,接下来令人惊喜的一幕便出现了——AI将自动为你生成完整的Python策略代码,让你可以更专注于策略本身的设计与优化。  2实盘模拟 2.1建立虚拟账号 建立好自己的虚拟账号,下一步就可以模拟实盘运行啦  2.2启动实盘模拟 打入资金,启动实盘运行看看自己创建的策略接下来几天收益怎样吧 
一一级标题 A量化策略的第一次尝试:未来可期,优化同行!!! 1.1二级标题 按照视频步骤,先熟悉一遍基础流程!  1.2二级标题 有哪些基本问题需要优化的地方: 1、第一个,当我们用AI助手,修改与分析策略的时候,你可以让助手帮你分析策略代码并且给出注释。 这时候你会发现,代码展示不全,有的地方被下拉边栏遮挡,这些小问题还需要优化,当然这个不属于逻辑问题!  ...