历史数据
历史数据标签描述

多空持仓控制仿真策略 学习到了需要在代码中修改绑定账户,即每个盘的账号不同,这个非常容易遗忘从而无法跑通策略。 多周期目标止盈 1、运用ai去了解代码的含义,不停地问答,ai回答的清晰易懂 2、我根据自己的思路去修改了交易条件:即根据RSI的数值去判定进出场位置,我设置的条件为RSI<=30与RSI=70做多与做空,并且在盈利条件下每跑出10个点加仓一次,统一在第一单达到50个点平仓。 K线形态交易 给ai说明了我想要进出场的K线形态,设定好做多和做空分别对应的三根K线形态。 问题:在上周...

精通AI、CV、NLP、pytorch、HFT和python。 ![image.png](1)

没有交易的策略实操心理没味 1.1之前一直没有交易数据,越操作越没劲;今天平台解决这一问题,终于能实盘交易了,哪怕是负年化率也比不交易好! 通过AI智能修复和AI分析策略,加上提示词调整,能让策略从年化率0.00%提高到86.66%,这真是伟大的功能; 策略目前是负数,跑几天看看最后情况,看能否和策略回测结果一致; ![图片_20260109152836_357_4.png](1)![图片_20260109152947_359_4.png](3)![图片_20260109152901_358...

摘要 本报告对基于动量效应但实现路径迥异的两套ETF轮动策略: 策略一(双均线动量轮动模型)与策略二(RSRS多因子评分模型)进行了长达十年(2015年1月1日至2025年1月1日)的全面实证分析,结合回测数据研究结果显示: 策略二以惊人的993.04%的总收益率、27.88%的年化收益率及-17.13%的最大回撤,在收益与风险控制上均实现了对策略一(总收益93.39%,年化7.02%,最大回撤-34.21%)的全面超越。从净值曲线形态看,策略二呈现出近乎完美的45度稳健上升趋势,而策略一的...

接口文档 一、通用K线数据 1.获取股票的详细信息 1.1.方法名:get_stock_detail 1.2.入参 |字段|类型|描述|是否必填| |:---|:---|:---|:---| |symbol|Optional\[Union\[str,List\[str\]\]\]|股票代码|非必填| |fields|Optional\[List\[str\]\]|返回字段|非必填| |market|Optional\[str\]|市场,支持cn,hk,us,默认cn|非必填| |status|Optional\[int\]|是否在市,1-在市,0-退市,-1-未知|非必填| 1.3...

1.引言 招商证券发布的这篇研究报告《AI系列研究之一:端到端的动态Alpha模型》探讨了一种基于深度神经网络的动态Alpha因子模型,旨在解决传统线性Alpha模型的局限性。这项研究不仅展示了机器学习在量化金融领域的应用,也为投资决策提供了新的思路和方法。本文将详细分析报告中提出的模型架构、实验设计、创新点以及实际效果。 2.传统因子投资框架及其局限性 2.1传统多因子Alpha模型的构建流程 传统的多因子Alpha模型构建一般包括以下步骤: 单因子研究与筛选 因子预处理(异常值处理、标准...

上篇[基于《AI系列研究之一:端到端的动态Alpha模型》理论分析](https://www.pandaai.online/community/article/77) 本篇文章会对其中各部分进行代码研究 大概流程划分为下 ![1.png](1) 数据清洗 目的 保证输入数据的质量,剔除不符合要求的样本。 减少后续特征工程和模型训练的偏差。 过滤掉ST和退市股,可避免模型学到噪声或极端异常;空值剔除确保计算指标和归一化不出错。 python defget_all_stocks(self,e...

  Co   2025年05月12日   587   0   4 Python机器学习历史数据

第三周-回测策略实战检验 1.策略加回测 本周实现了两个回测策略如下: 跨期套利仿真回测 ![image.png](2) MACD仿真回测 ![image.png](3) 2.加入实盘 ![image.png](4) 3.需要注意佣金倍率和保证金倍率,这个对回测结果是有很大影响的 ![image.png](5)

概述 最近由于Tushare服务故障,导致无法获取到行情数据,捉急之下,笔者想起miniqmt也是可以获取数据的,而且还能拿到一年的分钟频率数据,刚好最近也想着复现下高频数据的研报。那么,下面笔者就简单介绍下miniqmt如何获取数据。 1.开通账户 在使用miniqmt之前,需要找券商开通相关的服务,各位可以联系pandaai官方小助手,他们有开通的渠道,一般审核验证大概2-3个工作日就差不多了。开通成功之后,对接人员也会给相应的教程,指导如何使用,大家开通之后,直接参考教程即可。 2.数...

  AlphaSmith   2025年08月19日   986   1   0 Python新手入门历史数据数据API

最近在研究时间序列分析时,读到一篇关于相空间粗粒化的论文,让我对符号动力学产生了浓厚兴趣。作为量化交易者,我们总是在寻找市场转折点——从上涨转向下跌,从震荡转向趋势,从高波动转向低波动。传统的技术分析往往基于价格的绝对数值,但符号动力学提供了一个全新的视角:不要纠结于具体的价格,而是要关注状态的转换逻辑。 这个思路很有意思,让我想起做高频交易时的一个困惑:同样是上涨10个tick,在不同的市场状态下意义完全不同。如果我们能够准确识别和预测状态转换,是否就能在关键时刻抓住机会? 为什么要关注状...

一、引言 在金融市场投资策略研究领域,小市值和红利低波策略近年来备受关注。在过往研究在这两种策略应用中存在一定缺陷,本文旨在深入剖析并优化,本次着重解决上一次研究中小市值年化收益不足和回撤波动较大的问题。 [小市值与红利低波的互补研究:风险对冲与收益增强的双重路径](https://www.pandaai.online/community/article/76) 1.1上文研究不足之处 上文在优化小市值和红利低波动策略回撤上不够具体,主要体现小市值最大回撤高达34.78%,可以引入熔断机制或者宏...

![d75748b0553cd0a4f273f1aa8b7a6a09.png](1)![9029eb259abfd5fbebf433e8453cd696.png](2) 一当前数据评估指标的局限性与优化诉求 1.1数值孤立,分析链条断裂 数据源质量黑盒:我无从得知IC值的波动或衰减,是源于因子逻辑本身失效,还是底层数据(如财报发布延时、停复牌处理、价格异常点)的质量问题; 分析维度缺失:仅有一个时间序列上的平均IC或IR,缺乏其分位数分布、滚动周期变化、分行业/分市值维度的细项表现,难以定...

  ashenone   2025年12月30日   79   0   0 Python历史数据

一一级标题 A量化策略的第一次尝试:未来可期,优化同行!!! 1.1二级标题 按照视频步骤,先熟悉一遍基础流程! ![1.png](1)![2.png](2)![3.png](3)![5.png](5)![4.png](4) 1.2二级标题 有哪些基本问题需要优化的地方: 1、第一个,当我们用AI助手,修改与分析策略的时候,你可以让助手帮你分析策略代码并且给出注释。 这时候你会发现,代码展示不全,有的地方被下拉边栏遮挡,这些小问题还需要优化,当然这个不属于逻辑问题! ![6.png](6) ...

  13654149687   2025年12月16日   118   0   0 因子大赛PythonAPI接口历史数据