报告原文下载链接:https://pan.baidu.com/s/1vTlDC54x6ha8FSz6ERSaiA 提取码:gsjg 锚定效应是行为金融学的代表理论之一。投资者在进行股票投资时,往往会考虑股票过去的价格走势,比如将过去一年中的低点视为支撑位、过去一年中的高点视为压力位。当股价逼近过去高点时,“锚定投资者”会认为股价很难继续上涨至突破高点,因此很容易造成股票价格对其他利好消息的反应不足。 因此我们想利用创新高股票来获取超额收益,并在中证800股票池上测试。创新高股票定义:某只股票...
报告原文下载链接:https://pan.baidu.com/s/165I89OfDhxVeoCdtWDylDA提取码:cryy 高、低位放量是技术分析中经典的价量形态,通常被用于择时或事件驱动类型的研究,本篇报告尝试将其拓展到横截面选股领域,构建有效的选股因子。按常理来说,若股价触发“高位放量”形态,往往预示着主力资金开始出货,股票未来下跌的概率较大;反之若触发“低位放量”形态,则通常表明主力资金开始进场,股票未来有正向超额。  在本篇研报中,标签有每日开盘价...
报告原文下载链接:https://pan.baidu.com/s/1jBGmWCS1l-SolG02kOF_Rw提取码:zu97 相对强弱指标RSI(RelativeStrengthIndex)是最常用的技术分析指标之一,常被用来评估多空力量的强弱程度,被广泛应用于各种金融产品的研究分析中,但是RSI通常被用于时序择时,较少被用来在横截面上进行选股。本篇研报则将RSI技术指标扩展到横截面选股领域,构建有效的选股因子。 在本篇研报中,标签有股票代码,每日开盘价、收盘价,成交量,分钟级涨跌幅,市...
GitHub网址:https://github.com/PandaAI-Tech/panda_factor?tab=readme-ov-file 一、环境准备 1.Python3.9及以上 2.从GitHub上克隆项目到本地 gitclonehttps://github.com/your_org/panda_factor.git cdpanda_factor 二、MongoDB数据库安装 1.安装MongoDB8.x 数据库网盘链接:https://pan.baidu.com/s/1q...
报告原文下载链接:https://pan.baidu.com/s/1yShAqy_AY8aB8Vx4RvgvNg提取码:lvi0 和上次一样,我们先来分析标签、特征和因子分别是什么。在这篇研报中,标签有股票代码、每日开盘价、每日收盘价、交易者结构等未经加工的底层市场数据。特征有交易者结构(大小单)、交易占比(如小单交易占比=小单成交金额/总成交金额)、过去20日累计涨跌幅(Ret20)、过去240日累计涨跌幅(Ret240)、剔除最近40日的过去200日涨跌幅(Ret240_40)等从原始标签...
报告原文下载链接:https://pan.baidu.com/s/1xPDtXF138Q6bGZ4CxoTd7g提取码:dy4o 在这篇研报中,标签为每日开盘价、每日收盘价、每日换手率、指数隔夜涨跌幅等未经加工的底层市场数据。特征为传统隔夜涨跌幅、隔夜涨跌幅绝对值、超额隔夜涨跌幅、超额换手率、滚动相关性等从原始标签中提取或计算出的尚未验证预测能力的中间变量。因子为传统隔夜因子、隔夜跳空因子、新因子MIF等对收益率有显著解释力的特征。 本篇研报的核心与上一篇研报相同,都是利用A股市场的非有效性...
一、标签 1.定义 标签是原始数据中直接观测到的底层属性,是分析的基础原材料。 2.核心特点 未经加工的自然记录(如数据库中的原始字段)。 可能包含无关变量,需筛选后才能用于建模。 3.示例 金融领域:股票每日收盘价、成交量、财务报表中的净利润。 其他领域:气温、犯罪率、冰淇淋销量。 二、特征 1.定义 特征是从标签中筛选或派生出的变量,与当前分析目标直接相关。 2.核心特点 是标签的子集或变换结果(如对数收益率、移动平均线)。 需经过业务逻辑过滤(如投资分析中排除“天气数据”)。 3.示...
报告原文下载链接:https://pan.baidu.com/s/1ab9uNgS2Ydhimlu1jf5raA提取码:hgei 本篇研报以趋势资金为切入点:通过日内分钟级别的成交量来识别趋势资金,再通过对应的价、量数据推测其交易行为,构建有效的选股因子。该因子主要利用了市场的无效性,根据A股市场散户占比高,定价效率较低的特征,得出主力资金行为更容易产生超额收益机会这一结论,并将将主观交易经验(如“跟庄策略”)转化为可量化的指标。 由于获取数据上的限制,我在复现研报时只采用了2024-03-...
空空如也 ~ ~