接上一篇:Alphagen学习笔记(1.Qlib因子生成部分)。接下来尝试简化和重写qlib因子生成(更准确说应该是“因子计算”),即:1.替换成本地parquet文件行情数据2.再按表达式计算出因子值。 行情和因子值在各个模块中传递顺序为从左至右:data—loader—stock_data。 ![图片2.png](1) 小白编程还是要多用deepseek。我刚开始采用胡乱试的办法,把以上各个模块扔进对话框,先帮我解释一下代码,然后阐明接下来工作目标是要把mongodb行情数据替换成本地c...

-----想定制魔改qlib因子计算和改用小型数据文件的,希望有帮助----- 今年深圳课上接触到的alphagen,最吸引人的部分是:仅通过表达式就可以快速生成相应因子可在表达式层面高效开展因子探索。意识到引入这个部分对我当前投研数据工作会是一个很大提升。初步了解这部分内容是使用qlib实现的而qlib使用的是MongoDB数据库。初步了解MongoDB后决定暂时放弃(目前只做股票日间交易,A股全市场daily数据1GB左右目前的parquet够用)。 细化一下研究工作域边界和内容:研究q...

以下是依据两篇研报因子的文字描述,通过deepseek/pandaai解读生成的Python代码实现,保留了AI生成过程和注释。意识到很多学员用户也正在做这个工作,为节约人力算力能源,在量变学院社群分享一下。 ![image.png](1) ![1748494420354.png](2) 这里是上篇《中金价量》的部分: 通过网盘分享的文件:alpha191中金量价_dspandaai(上).docx 链接:https://pan.baidu.com/s/1O9pvVkP_C_N54kbwAN...

  Cai   2025年05月29日   133   0   0 新手入门学习资源Python代码分享

对于刚转向因子投资的交易者,选择站在前辈肩膀上复现已有的研报因子是不可回避的学习途径。 PandaAI集成了数据/回测/分析框架及代码AI助手一体,为因子学习探索提供了极大便利。 2022年中金《价量因子手册》对于量价覆盖全面,不少量价因子在报告期和以后的很长时间均表现良好。 ![image.png](1) 刚开始尝试的是动量&反转因子: ![image.png](2) 构建方式和计算公式如下: ![image.png](3) 步骤如下: Step1:进入[pandaai因子大赛官...

  Cai   2025年05月18日   180   0   0 新手入门因子大赛活动与比赛