傅立叶变换的核心能力,与Twap与Vwap的案例结合 傅立叶变换的本质是“将时域信号分解为频域信号”——简单说,就是把“随时间变化的价格/成交量数据”(比如1分钟K线的价格序列),拆解成由不同频率(周期)、振幅(强度)、相位(时间偏移)组成的正弦波叠加。 其核心价值在于:把“难以直接量化的‘趋势/震荡/周期性’”,转化为“可精准计算的频率特征”。例如: 低频成分:对应长期趋势(如1小时级别的慢涨/慢跌); 中频成分:对应中期震荡(如15分钟级别的来回波动); 高频成分:对应短期噪音(如1分钟内的...
各类机器学习模型常见的应用场景 1.1机器学习在量化交易当中的底层逻辑 -量化交易的核心是通过数据,统计,找出市场的规律,从而预测市场走势, 常见的规律有线性规律与非线性规律, 而机器学习就像一个“数据翻译官”,能从海量金融数据中找出非线性规律 核心逻辑:用历史数据训练模型,让模型学会“识别”数据中的模式(如价格波动、因子相关性等),再用这些模式预测未来市场变化,辅助交易决策。 1.2二级标题 1.二、常见模型原理与应用场景 1.决策树(DecisionTree) 原理: 像“层层问答”的流程图,通过不断问问题(如“价格是否突破20日均线?”“成交量是否放大?”)将数据分成不同类别。 ...