<fontcolor="brown"一、开篇</font <fontcolor="red"一切任务都可以抽象成一个工作流!</font  要踏入量化投资的复杂领域,本需艰难拼凑编程、交易实操、高阶数学、AI算法、金融市场等知识拼图。但掌握已专业定制的“工作流”这一核心绝技,就能直接复用专业投资者的经验路径——像搭积木般调用现成流程,把复杂任务拆解成清晰步骤,让新手也能快速对齐专业视角,少踩坑、少绕路,高效逼近量化投资的核心能力。 在20...
<fontcolor="brown"一、引言</font <fontcolor="red"强化学习已经开始“闯”量化!</font  在参加《量变学院》第五期线下课程后,我首次接触到AlphaGen这一基于强化学习的公式化Alpha因子挖掘框架。其核心思想是通过策略梯度方法(如PPO算法)自动生成具有协同作用的Alpha因子集合,从而提升量化投资策略的性能。为深入理解《GeneratingSynergisticFormulaicAlphaCollec...
<fontcolor="brown"一、引言</font <fontcolor="red"TheFutureofCodingis‘TabTabTab’</font  OpenAI创始成员AndrejKarpathy曾说过:"编码的未来是按Tab键自动补全"。 Cursor的出现推动开发者角色从“编写代码”转向“引导AI生成正确代码”。未来编程将高度依赖AI自动化补全能力,开发者只需通过反复按“Tab键”即可快速生成代码。目前,Cursor、GitHub...
<fontcolor="brown"一、开篇</font <fontcolor="red"工作流解锁量化大众化,全民玩转量化时代已来!</font  上篇文章详细介绍了PandaAI线性模型工作流的完整流程,同时也阐述了策略回测分析与因子相关性分析的具体步骤。正如我们之前所强调的——任何任务都能拆解为清晰可控的工作流,因此我们将进一步把机器学习相关工作流应用到量化分析场景中。 在下面连接中可以看到关于PandaAI工作流的详细介绍和多因子模...
<fontcolor="brown"一、开篇</font <fontcolor="orange"Lifeisshort,youneedPython!</font <fontcolor="red"人生苦短,我用Python!</font  文科生学习量化投资,确实存在诸多门槛。在前文提及的数理、代码、金融、交易这四个维度里,我觉得数理当属最为关键且难度最高的部分。毕竟里面有线性代数、统计、概率论、计量经济这些硬核内容,咱可以先Pass这部分。...
<fontcolor="brown"一、背景</font <fontcolor="red"谁是西蒙斯?</font  2019年,我天天对着堆成山的财务报表加班,眼睛都快看花了。Excel和财务软件上跳动的数字突然变得陌生——难道我的人生就要永远困在这些冰冷的账目里?难道我就这样替人做利润表一辈子,自己的财务人生却还是空白? 想起大学时炒股的“黑历史”,看了两本技术指标书后,啥也不懂就瞎买,最后被割得干干净净,成了妥妥的韭菜。但心里一直藏着个梦想:...
<fontcolor="firebrick"一、背景</font <fontcolor="red"Alpha101的核心是通过特征工程优化因子,以此简化模型构建并提升训练效率与效果。</font  Alpha101因子体系如同量化投资领域的一座宝藏,其中101个因子构成了众多投资策略的"地基",始终备受关注。 此前的两篇文章已深入拆解这些因子的设计逻辑及其预测市场走势的底层原理,可参考以下链接获取深度解析: [<fontcolor="pu...
<fontcolor="firebrick"一、背景</font Alpha101 <br Weemphasizethatthe101alphaswepresentherearenot‘toy’alphasbutreal-lifetradingalphasusedinproduction. <fontcolor="red"101个阿尔法因子并非用于理论研究的“玩具”因子,而是在实际交易中使用的真实因子。</font  此前,在《Alp...
<fontcolor="brown"一、背景</font Alpha101 <br Verycoarsely,onecanthinkofalphasignalsasbasedonmean-reversionormomentum. <fontcolor="red"大致来说,Alpha信号可基于均值回归或动量来理解。</font  量化交易作为金融市场的重要组成部分,在过去几十年中经历了显著的发展与演变。在这一领域,Alph...
一、引言 在量化分析领域,因子库的有效构建与管理是实现精准投资决策的核心环节。为满足因子数据存储与高效分析的需求,选择合适的数据库至关重要。本文专注于本地MongoDB数据库的搭建,以及Python在该数据库配置与因子数据处理中的应用,旨在为量化分析过程中因子库的本地化配置提供系统性的解决方案。  二、MongoDB用于多因子分析的优势 传统的关系型数据库就像一个个整齐排列的小格子房间,每个房间的大小、形状都得提前规定好,东西得规规矩矩地放进去。而Mongo...