量化策略
量化策略标签描述

你有策略我帮助实现,你没策略我提供 别再让通达信数据“躺平”!Python编程帮你把行情变成赚钱信号,3天上手,免费领工具包 你是不是每天盯着通达信K线图,翻遍几十页数据却找不到精准买卖点?明明知道行情里藏着机会,却被手动选股、公式编辑搞得头大,眼睁睁看着好标的溜走? 现在不用愁了!我帮100+股民解决过“数据不会用、策略不会写”的问题,用Python编程打通通达信的“任督二脉”—— ✅自动爬取通达信日线/分钟线数据,不用再手动导出Excel; ✅一键回测你的交易策略(比如MACD金叉、均线多...

报告原文下载链接:https://pan.baidu.com/s/1ab9uNgS2Ydhimlu1jf5raA提取码:hgei 本篇研报以趋势资金为切入点:通过日内分钟级别的成交量来识别趋势资金,再通过对应的价、量数据推测其交易行为,构建有效的选股因子。该因子主要利用了市场的无效性,根据A股市场散户占比高,定价效率较低的特征,得出主力资金行为更容易产生超额收益机会这一结论,并将将主观交易经验(如“跟庄策略”)转化为可量化的指标。 由于获取数据上的限制,我在复现研报时只采用了2024-03-...

精通AI、CV、NLP、pytorch、HFT和python。 ![image.png](1)

<fontcolor="brown"一、背景</font Alpha101 <br Verycoarsely,onecanthinkofalphasignalsasbasedonmean-reversionormomentum. <fontcolor="red"大致来说,Alpha信号可基于均值回归或动量来理解。</font ![alpha150_proc.jpg](1) 量化交易作为金融市场的重要组成部分,在过去几十年中经历了显著的发展与演变。在这一领域,Alph...

报告原文下载链接:https://pan.baidu.com/s/165I89OfDhxVeoCdtWDylDA提取码:cryy 高、低位放量是技术分析中经典的价量形态,通常被用于择时或事件驱动类型的研究,本篇报告尝试将其拓展到横截面选股领域,构建有效的选股因子。按常理来说,若股价触发“高位放量”形态,往往预示着主力资金开始出货,股票未来下跌的概率较大;反之若触发“低位放量”形态,则通常表明主力资金开始进场,股票未来有正向超额。 ![image.png](1) 在本篇研报中,标签有每日开盘价...

  18958283423   2025年07月13日   241   1   0 量化策略

<fontcolor="firebrick"一、背景</font Alpha101 <br Weemphasizethatthe101alphaswepresentherearenot‘toy’alphasbutreal-lifetradingalphasusedinproduction. <fontcolor="red"101个阿尔法因子并非用于理论研究的“玩具”因子,而是在实际交易中使用的真实因子。</font ![alpha511012.JPG](1) 此前,在《Alp...

上一篇文章我们介绍了高频因子的动量反转类因子,这一篇继续介绍波动率因子,并在因子分析的基础上加入策略回测。 研究环境利用聚宽因子分析API,构建因子函数类;研究在日内高频分钟级数据中挖掘构建高频因子,对该因子进行有效性检验,并利用回测平台进行回测。 一波动率因子 1.1波动率因子构建 第二大类因子为波动率因子。波动率因子刻画了股票价格或股票收益在过去一段时间的不确定性程度,高波动率通常反映其不确定性程度较高,未来收益表现可能相对较弱。 ![pic1.png](1) 将传统的收益波动、振...

因子积累的探索与踩坑 1.1探究的原因 因为XGB或者MLP等等吧,模型如果需要有好的效果,最核心的不是模型参数或复杂度,而是因子的非线性复杂度要高。核心还是因子。一般作为普通投资者来说,最简单的就是研报复现以及公共平台的因子获取,虽然已经没什么超额了,但也属于“没得选的选择”,所以先试试看吧。本次记录的就是研报复现和平台获取因子的过程。 1.2研报复现的过程 找了上个月最新的一篇研报,叫《20250602-东北证券-盈利偏度和估值偏度因子》,这篇研报主要讲的是:传统偏度研究多聚焦在收...

  ELVES   2025年08月01日   166   0   1 数据API数据清洗数据存储量化策略

因子积累的探索与踩坑 1.1探究的原因 因为XGB或者MLP等等吧,模型如果需要有好的效果,最核心的不是模型参数或复杂度,而是因子的非线性复杂度要高。核心还是因子。一般作为普通投资者来说,最简单的就是研报复现以及公共平台的因子获取,虽然已经没什么超额了,但也属于“没得选的选择”,所以先试试看吧。本次记录的就是研报复现和平台获取因子的过程。 1.2研报复现的过程 找了上个月最新的一篇研报,叫《20250602-东北证券-盈利偏度和估值偏度因子》,这篇研报主要讲的是:传统偏度研究多聚焦在收...

行情类 获取股票详细数据 方法名:get_stock_detail 使用示例 python importpanda_quant stocks=panda_quant.get_stock_detail(symbol="000001.SZ",fields=["symbol","name"]) print(stocks) 入参: |字段|类型|描述|是否必填| |---------|----------------|------|------| |symbol|str|股票代码|必填| |fields|Optional[list]|返回字段|非必填| 响应参数: |字段|类型|...

<fontcolor="firebrick"一、背景</font <fontcolor="red"Alpha101的核心是通过特征工程优化因子,以此简化模型构建并提升训练效率与效果。</font ![Alpha101main.JPG](1) Alpha101因子体系如同量化投资领域的一座宝藏,其中101个因子构成了众多投资策略的"地基",始终备受关注。 此前的两篇文章已深入拆解这些因子的设计逻辑及其预测市场走势的底层原理,可参考以下链接获取深度解析: [<fontcolor="pu...

上一篇文章我们介绍了高频因子的流动性因子、量价相关性因子,这一篇继续介绍筹码分布因子,并在因子分析的基础上加入策略回测。 研究环境利用聚宽因子分析API,构建因子函数类;研究在日内高频分钟级数据中挖掘构建高频因子,对该因子进行有效性检验,并利用回测平台进行回测。 一筹码分布因子 1.1因子介绍 第六大类因子为筹码分布因子。筹码分布旨在刻画股票持有人的持仓成本分布情况。筹码分布能够直观地展示不同价格区间上的持仓数量,从而帮助投资者判断市场的平均持仓成本。如果大部分筹码集中在较低的价格区间,说...

报告原文下载链接:https://pan.baidu.com/s/1yShAqy_AY8aB8Vx4RvgvNg提取码:lvi0 和上次一样,我们先来分析标签、特征和因子分别是什么。在这篇研报中,标签有股票代码、每日开盘价、每日收盘价、交易者结构等未经加工的底层市场数据。特征有交易者结构(大小单)、交易占比(如小单交易占比=小单成交金额/总成交金额)、过去20日累计涨跌幅(Ret20)、过去240日累计涨跌幅(Ret240)、剔除最近40日的过去200日涨跌幅(Ret240_40)等从原始标签...

  18958283423   2025年06月24日   158   0   0 Python量化策略

最近在研究时间序列分析时,读到一篇关于相空间粗粒化的论文,让我对符号动力学产生了浓厚兴趣。作为量化交易者,我们总是在寻找市场转折点——从上涨转向下跌,从震荡转向趋势,从高波动转向低波动。传统的技术分析往往基于价格的绝对数值,但符号动力学提供了一个全新的视角:不要纠结于具体的价格,而是要关注状态的转换逻辑。 这个思路很有意思,让我想起做高频交易时的一个困惑:同样是上涨10个tick,在不同的市场状态下意义完全不同。如果我们能够准确识别和预测状态转换,是否就能在关键时刻抓住机会? 为什么要关注状...

各类机器学习模型常见的应用场景 1.1机器学习在量化交易当中的底层逻辑 -量化交易的核心是通过数据,统计,找出市场的规律,从而预测市场走势, 常见的规律有线性规律与非线性规律, 而机器学习就像一个“数据翻译官”,能从海量金融数据中找出非线性规律 核心逻辑:用历史数据训练模型,让模型学会“识别”数据中的模式(如价格波动、因子相关性等),再用这些模式预测未来市场变化,辅助交易决策。 1.2二级标题 1.二、常见模型原理与应用场景 1.决策树(DecisionTree) 原理: 像“层层问答”的流程图,通过不断问问题(如“价格是否突破20日均线?”“成交量是否放大?”)将数据分成不同类别。 ...

![ca1822dea19c3d6c2411b4bcbda66430.jpg](2) ![9746ea6e906fc9ae918133b104e5bff9.jpg](1) ![95184232a0f90a4006e1e1606e5cbed9.jpg](3)