报告原文下载链接:https://pan.baidu.com/s/1xPDtXF138Q6bGZ4CxoTd7g提取码:dy4o 在这篇研报中,标签为每日开盘价、每日收盘价、每日换手率、指数隔夜涨跌幅等未经加工的底层市场数据。特征为传统隔夜涨跌幅、隔夜涨跌幅绝对值、超额隔夜涨跌幅、超额换手率、滚动相关性等从原始标签中提取或计算出的尚未验证预测能力的中间变量。因子为传统隔夜因子、隔夜跳空因子、新因子MIF等对收益率有显著解释力的特征。 本篇研报的核心与上一篇研报相同,都是利用A股市场的非有效性...
傅立叶变换的核心能力,与Twap与Vwap的案例结合 傅立叶变换的本质是“将时域信号分解为频域信号”——简单说,就是把“随时间变化的价格/成交量数据”(比如1分钟K线的价格序列),拆解成由不同频率(周期)、振幅(强度)、相位(时间偏移)组成的正弦波叠加。 其核心价值在于:把“难以直接量化的‘趋势/震荡/周期性’”,转化为“可精准计算的频率特征”。例如: 低频成分:对应长期趋势(如1小时级别的慢涨/慢跌); 中频成分:对应中期震荡(如15分钟级别的来回波动); 高频成分:对应短期噪音(如1分钟内的...