一:PandaAI仿真实盘种子用户招募:200席专属资格,定义量化新工具 我们不是在找「用户」,而是在寻「战友」——那些真正沉心做策略、懂交易的实践者,和我们一起打磨下一代量化工具,让智能交易更贴合实战需求 1.1成为种子用户,你将独占这些专属权益 5000+初始算力包:直接到账,无门槛支持策略回测、因子深度研究、仿真实盘交易,算力自由一步到位 产品共建者身份:你的每一个建议都能直达产品核心团队,功能优先级、迭代方向由你参与决定 线下课门票直通票:完成简单内测打卡任务,即可锁定行业大咖策略分享...

  18279358870   7天前   112   0   2 活动与比赛

<fontcolor="brown"一、开篇</font <fontcolor="red"一切任务都可以抽象成一个工作流!</font ![01PandaAIlogo.png](1) 要踏入量化投资的复杂领域,本需艰难拼凑编程、交易实操、高阶数学、AI算法、金融市场等知识拼图。但掌握已专业定制的“工作流”这一核心绝技,就能直接复用专业投资者的经验路径——像搭积木般调用现成流程,把复杂任务拆解成清晰步骤,让新手也能快速对齐专业视角,少踩坑、少绕路,高效逼近量化投资的核心能力。 在20...

一、参与背景:为何加入PandaAI种子用户计划 当我看到PandaAI发布的"仿真实盘种子用户招募"计划时,立刻被其中"定义量化新工具"的愿景所吸引。与普通产品内测不同,这次招募明确提出寻找"战友"而非单纯"用户",强调与真正沉心做策略、懂交易的实践者共同打磨下一代量化工具。这种共创模式让我对PandaAI团队的专业态度产生信任,于是毫不犹豫地提交了申请。 作为有一定量化交易经验的参与者,我特别看重计划中提到的几大专属权益:5000+初始算力包可无门槛支持策略回测和仿真实盘交易;产品共建者身份能让建议直达产品核心团队;还有与产品团队、资深策略开发者同群交流的机会。这些权益不仅实用,更体现出P...

一般投研写代码开始,环境会固定下来,生产时的环境更是如此。但是一旦需要新建更新迁移环境,添加删除更新相关的库,还是会耗费不少时间精力。我写几个目前为止可能有用的实践经验。 管理工具 conda用于环境创建管理是最好,对库的安装管理就未必(确实比较慢)。pip的资源最全面,较新mamba的管理也很全面,逻辑更优化速度会快很多。 库源 就我们金融量化领域最重的几个库源:-cconda-forge-cpytorch还有英伟达。 添加到默认路径里condaconfig--addchannels-conda-forge 如果慢,可以把清华和阿里的也添加进去,但优先级设置低一点。 安装更新 确定本次...

为什么改造gplearn 1. 框架简洁代码精炼。之前被Qlib深度折磨过(以前文章写过https://www.pandaai.online/community/article/130)。Qlib投研全流程环节多模块多,而后期可能提交维护投入变少越来越臃肿。gplearn就是['genetic','functions','program','fitness'],然后再加上一基础设施'utility'五个部分。核心因子公式program的遗传变异进化操作就是围绕着一个list列表对象实现的(再次...

<fontcolor="brown"一、引言</font <fontcolor="red"统计是量化分析中的核心关键环节!</font ![image.png](1) 上次介绍过统计学的重要性,还说明了它的词源的和古代国王必修课的背景知识。从这次开始,我们正式进入统计基础部分,现在也是时候换一种思路学习统计学了。 对我而言,因为在学习量化的过程中必须攻克统计学这道难关,所以几年前我强迫自己报名了《中级统计》考试。该考试的教材内容包含统计学与数据、数据描述、参数估计、假设检验等章...

QuantFabric系统架构革新:共享内存驱动的超低延迟新时代 继续跟随天山老妖的QuantFabric教程深入学习,这次迎来了系统架构的里程碑式重大升级。如果说之前的HFTrader展现了纳秒级的极致性能,那么这次基于共享内存的架构革新则是从根本上重构了系统的通信基础,将低延迟性能提升到了新的高度。 这次升级的核心在于彻底消除TCP通信的延迟瓶颈,通过共享内存(SHM)技术实现内存级速度的数据传输。同时,引入全新的XQ策略进程组件,实现了策略层与基础设施层的完全解耦,既保证了核心组件的稳定性,又提供了策略开发的极致灵活性。 这次学习让我深刻认识到,优秀的系统架构不仅要追求性能的极限,...

  alphonse   2025年10月29日   171   0   0 学习资源经验分享C++高频交易

<fontcolor="brown"一、引言</font <fontcolor="red"Python的核心不是“炫技”,而是“实用”</font ![image.png](1) 到此,我们已探讨完Python核心且重要的知识点,涵盖数据结构、流程控制、函数用法、类与对象,以及Numpy、Pandas等常用库。而在本次“Python进阶2”的内容中,我们将进一步介绍Python的其他高级用法与科学计算库——不仅会讲解Python风格(Pythonic)及各类高级编程技巧,还会重点...

<fontcolor="brown"一、引言</font <fontcolor="red"想成为王者,必须懂统计</font ![image.png](1) 此前已经写过几个关于量化分析“代码篇”的分享,接下来要进入的,既是量化领域的核心内容,也是我们很多文科生觉得难度最大的“数理”部分,而我们“数理”的第一站,就是“统计学”。 ![image.png](2) 在量化分析的数理基础里,线性代数、微积分、概率统计、计量经济等缺一不可,但其中统计检验直接关系到数据结论的可靠性——...

  我是宽客   2025年10月22日   412   1   0 学习资源经验分享新手入门

最近读了一篇关于预测市场套利的论文,让我对"市场效率"这个概念有了全新的认识。作为一个关注量化交易和市场微观结构的人,这篇论文揭示的现象既令人震惊,又在情理之中。 核心发现很简单:在2024年美国大选期间,一群神秘的套利者从Polymarket这个预测市场平台中,悄无声息地提取了约4000万美元的利润。 他们没有预测谁会当选,没有分析选情走势,甚至不关心最终结果。他们只做一件事:在市场定价出现错误的瞬间,闪电般地完成买卖,锁定无风险利润。 这个故事让我想起华尔街的一句老话:"在别人恐慌时贪婪,在别人贪婪时恐惧。"但这些套利者做的更极致——他们在别人混乱时,保持着机器般的冷静。 --- ...

  alphonse   2025年10月08日   304   0   0 策略讨论学习资源经验分享

<fontcolor="brown"一、引言</font <fontcolor="red"Python是一种“胶水语言”,能够整合多种库与工具!</font ![image.png](1) Python是“胶水语言”,能够将各种不同的库和工具粘合在一起,创造出强大的解决方案。 在上一次的介绍中,我们已经讲解了Python基础的4个模块(数据结构、流程控制、函数用法、面向对象);本次将聚焦Python的进阶使用方法,以及数据分析领域的核心工具库。对于刚开始接触量化分析或数据分析初...

继续深入天山老妖QuantFabric教程的技术精髓,这次我们踏入了高频交易的核心——低延迟技术的全栈优化。如果说前面的HFTrader系统架构让我们看到了高频交易的整体框架,那么这次的低延迟技术分享则是深入到每一个技术细节的极致追求。从硬件超频到内核旁路,从CPU隔离到零拷贝优化,每一个环节都在诠释什么叫"毫秒必争,纳秒见真章"。 在这个以纳秒计算的技术世界里,250纳秒的ef_vi延迟与2-3微秒的标准网络栈延迟之间的差距,可能就是盈利与亏损的分水岭。这不仅仅是技术的较量,更是对工程极限的挑战和对商业价值的精准把握。 这次学习让我深刻认识到,高频交易的低延迟优化是一门综合性的系统工程:...

  alphonse   2025年09月23日   331   0   0 学习资源经验分享高频交易

<fontcolor="brown"一、引言</font <fontcolor="red"文科生学量化需要学编程吗?</font ![image.png](1) 上次我们已经学习了Python安装与配置的相关内容。这次将运用已学的编程知识,简要介绍Python的4个基础模块:数据结构、流程控制、函数用法、类与对象。在开启编程学习之旅前,我们需要明确为什么要学编程,以及该怎么学。 <fontcolor="brown"二、编程</font <fontcolor="darkblue"为什...

  我是宽客   2025年09月17日   736   4   10 学习资源经验分享Python新手入门

踏入天山老妖QuantFabric教程的技术巅峰——HFTrader高频交易系统,这是整个学习旅程中最激动人心的核心篇章。如果说前面的环境搭建、工具配置是在打地基,那么HFTrader就是真正的速度与技术的终极较量。在这个以纳秒计算的高频交易世界里,1008纳秒的最小延迟和4184纳秒的最大延迟,每一个数字都代表着技术实力的极致展现。 HFTrader作为QuantFabric量化交易系统的高频核心,承载着将毫秒级市场机会转化为实际收益的重任。从四线程架构设计到CPU亲和性绑定,从无锁队列优化到多层风控体系,每一个技术细节都在诠释什么叫"细节决定成败"。这不仅仅是一个交易系统,更是现代金融科...

<fontcolor="brown"一、引言</font <fontcolor="red"强化学习已经开始“闯”量化!</font ![image.png](8) 在参加《量变学院》第五期线下课程后,我首次接触到AlphaGen这一基于强化学习的公式化Alpha因子挖掘框架。其核心思想是通过策略梯度方法(如PPO算法)自动生成具有协同作用的Alpha因子集合,从而提升量化投资策略的性能。为深入理解《GeneratingSynergisticFormulaicAlphaCollec...

你有策略我帮助实现,你没策略我提供 别再让通达信数据“躺平”!Python编程帮你把行情变成赚钱信号,3天上手,免费领工具包 你是不是每天盯着通达信K线图,翻遍几十页数据却找不到精准买卖点?明明知道行情里藏着机会,却被手动选股、公式编辑搞得头大,眼睁睁看着好标的溜走? 现在不用愁了!我帮100+股民解决过“数据不会用、策略不会写”的问题,用Python编程打通通达信的“任督二脉”—— ✅自动爬取通达信日线/分钟线数据,不用再手动导出Excel; ✅一键回测你的交易策略(比如MACD金叉、均线多...

继续深入天山老妖的QuantFabric教程学习之旅,这次的内容涵盖了两个关键主题:Git子模块的管理实践和C单例模式的设计实现。看似技术细节各异,但实际上都体现了系统工程中的核心思想——模块化管理和资源统一控制。 在量化交易系统开发中,代码组织和架构设计的重要性不言而喻。Git子模块解决了多团队协作中的代码复用问题,而单例模式则确保了系统关键组件的唯一性和一致性。工程实践中的每一个设计决策,都直接影响着系统的可维护性和稳定性。 这次学习让我深刻认识到,量化交易系统的复杂性不仅体现在算法策略上,更体现在工程架构的精细化管理。从版本控制到设计模式,从编译构建到资源管理,每一个环节都需要深入的...

继续跟着天山老妖的QuantFabric教程深入学习,这次聚焦于开发环境搭建的核心组件——Qt和CMake的安装配置。如果说前面的基础环境搭建是地基,那么Qt和CMake就是框架的主体结构。没有稳固的开发工具链,再好的策略想法也无法落地实现。 这次的学习让我深刻体会到,量化交易系统开发不仅需要扎实的金融知识和编程技能,更需要对开发工具有深入的理解。特别是在Linux环境下配置图形化开发环境,每一个细节都可能影响后续的开发效率。从版本选择到环境变量配置,从账户验证到套件检测,看似简单的安装过程实际上蕴含着丰富的技术细节。 Qt安装:图形化开发的基石 版本选择的策略考量 在Qt的版本选择上...

上一篇文章我们介绍了高频因子的流动性因子、量价相关性因子,这一篇继续介绍筹码分布因子,并在因子分析的基础上加入策略回测。 研究环境利用聚宽因子分析API,构建因子函数类;研究在日内高频分钟级数据中挖掘构建高频因子,对该因子进行有效性检验,并利用回测平台进行回测。 一筹码分布因子 1.1因子介绍 第六大类因子为筹码分布因子。筹码分布旨在刻画股票持有人的持仓成本分布情况。筹码分布能够直观地展示不同价格区间上的持仓数量,从而帮助投资者判断市场的平均持仓成本。如果大部分筹码集中在较低的价格区间,说...

  迪仔   2025年08月23日   1170   1   0 经验分享Python多因子模型量化策略

概述 PandaQAuantFlow开源之后,社区很多小伙伴去下载也本地部署了,但是本地的行情数据只到2025-05-15,没法使用最新的数据进行回测。好在panda_factor里面提供了自动更新数据库的功能,以下笔者将简单介绍如何进行手动更新。 1.更新之前 在更新之前,需要按照github上的说明部署好本地环境,部署跟着这个https://github.com/PandaAI-Tech/panda_quantflow里面的readme来,B站上还有[保姆级别安装视频](https://...

  AlphaSmith   2025年08月21日   529   1   1 数据存储数据清洗