经验分享
经验分享标签描述

你有策略我帮助实现,你没策略我提供 别再让通达信数据“躺平”!Python编程帮你把行情变成赚钱信号,3天上手,免费领工具包 你是不是每天盯着通达信K线图,翻遍几十页数据却找不到精准买卖点?明明知道行情里藏着机会,却被手动选股、公式编辑搞得头大,眼睁睁看着好标的溜走? 现在不用愁了!我帮100+股民解决过“数据不会用、策略不会写”的问题,用Python编程打通通达信的“任督二脉”—— ✅自动爬取通达信日线/分钟线数据,不用再手动导出Excel; ✅一键回测你的交易策略(比如MACD金叉、均线多...

一、引言: 在进行回测系统的搭建中,了解指标评估因子的质量的意义是重要的,现在写出一篇帖子用于评估策略。 本文采用的策略指标复现源自PandaAi开源项目截取。 量化策略的回测评估依赖多项绩效指标。通过分析年化收益率、超额收益率、最大回撤、波动率、夏普比率和信息比率等指标,可以全面了解策略的收益能力与风险特征。例如,夏普比率是一种衡量单位风险所获超额收益的指标,而超额收益表示相对于选定基准的附加回报。 此外,因子质量指标(如信息系数IC、IC信息比率ICIR、秩相关系数等)可用于评估单个因子的预...

<fontcolor="brown"一、引言</font <fontcolor="red"TheFutureofCodingis‘TabTabTab’</font ![image.png](1) OpenAI创始成员AndrejKarpathy曾说过:"编码的未来是按Tab键自动补全"。 Cursor的出现推动开发者角色从“编写代码”转向“引导AI生成正确代码”。未来编程将高度依赖AI自动化补全能力,开发者只需通过反复按“Tab键”即可快速生成代码。目前,Cursor、GitHub...

高频交易深度解析:从历史演进到技术实现的完整图景 继续跟着天山老妖的QuantFabric教程学习,这次的内容让我对高频交易有了更全面和深入的认识。如果说前面两篇文章是在讲"工具",那么这一篇就是在讲"战场"——高频交易这个充满传奇色彩又极具技术挑战的领域。 从17世纪罗斯柴尔德家族用信鸽传递消息进行跨国套利,到今天用纳秒级系统捕捉微观价差,高频交易的本质始终未变:在信息传递的速度差中寻找利润。但技术的进步让这个"速度差"从几天缩短到了几纳秒,竞争的激烈程度也达到了前所未有的高度。 什么是高频交易? 高频交易(HFT)本质上是一种程序化交易,目标是从极其短暂的市场变化中获取利润。这种"...

  alphonse   2025年07月30日   297   1   1 学习资源经验分享高频交易

延续上次对市场"状态转换逻辑"的探讨,我们知道识别市场状态固然重要,但真正的挑战在于如何快速执行。最近在学习天山老妖的QuantFabric教程([edu.csdn.net/learn/37051/572467](https://edu.csdn.net/learn/37051/572467?spm=1002.2001.3001.4157)),对高频交易系统的架构有了更深入的理解。 作为量化交易者,我们都知道速度和精确性的重要性。今天分享一下从教程中学到的QuantFabric系统架构,看看它如何通过精妙的设计和优化,帮助交易者在毫秒甚至纳秒间执行交易。 高频交易的核心需求 在高频交易的...

  alphonse   2025年07月16日   427   0   0 C++C学习资源经验分享高频交易

<fontcolor="brown"一、开篇</font <fontcolor="red"一切任务都可以抽象成一个工作流!</font ![01PandaAIlogo.png](1) 要踏入量化投资的复杂领域,本需艰难拼凑编程、交易实操、高阶数学、AI算法、金融市场等知识拼图。但掌握已专业定制的“工作流”这一核心绝技,就能直接复用专业投资者的经验路径——像搭积木般调用现成流程,把复杂任务拆解成清晰步骤,让新手也能快速对齐专业视角,少踩坑、少绕路,高效逼近量化投资的核心能力。 在20...

量化算子工具类使用文档 本文档汇总介绍了量化算子工具类(公式版)中所有函数的功能、输入/输出说明以及使用示例。所有函数均以静态方式提供,调用时直接使用函数名称,无需添加类名前缀。 示例中均采用如下调用格式,例如: python 返回收盘价序列 CLOSE python 返回CLOSE(收盘价)和VOLUME(成交量)的20日滚动相关性系数序列 CORRELATION(CLOSE,VOLUME,20) python 返回收盘价、最高价、最低价三者的均值序列 (CLOSE+HIGH+LOW)/3 --- 基础因子 |因子名|说明| |-|-| |CLOSE|收盘价| |OPE...

上次我们通过天山老妖的教程了解了QuantFabric的系统架构设计,从理论层面认识了这套高频交易系统。今天继续跟着教程的第二部分,看看这个系统在实际运行时是什么样子的。 如果说上一篇是在看"设计图纸",那么这一篇就是在看"驾驶舱"——一个真正运行中的量化交易系统,交易员每天面对的操作界面,以及系统背后各个组件是如何协同工作的。 从理论到实践的跨越 理论再完美,最终还是要落地到实际使用中。天山老妖在这个演示中,展示了一个完整的QuantFabric测试环境,让我们能够直观地看到: 行情数...

  alphonse   2025年07月21日   167   1   0 C++学习资源经验分享高频交易

上一篇文章我们介绍了高频因子的高阶特征因子,这一篇继续介绍流动性因子、量价相关性因子,并在因子分析的基础上加入策略回测。 研究环境利用聚宽因子分析API,构建因子函数类;研究在日内高频分钟级数据中挖掘构建高频因子,对该因子进行有效性检验,并利用回测平台进行回测。 一流动性因子 1.1因子介绍 第四大类因子为流动性因子。流动性刻画股票交易所需要的时间和成本,一般来说,流动性较差的个股通常有更高的预期收益,这是对流动性风险的风险补偿。因此,流动性因子通常表现为流动性越低,未来收益越高的特征(也会...

  迪仔   2025年08月06日   334   1   0 学习资源多因子模型Python经验分享

继续跟着天山老妖的QuantFabric教程学习,这次的内容让我对期货交易有了更系统的认识。如果说前面几篇文章是在讲高频交易的"武器"和"战场",那么这篇就是在讲"基本功"——期货交易的基础知识和规则体系。 作为量化交易者,我们往往更关注策略逻辑和技术实现,但对交易规则的深入理解同样重要。细节决定成败,规则差异往往是盈亏的关键。这次学习让我意识到,即使是看似简单的开平仓操作,在不同交易所也有不同的规则和成本考量。 中国期货市场的基础架构 五大期货交易所各有特色 中国期货市场由五大交易所构成,每个都有自己的特色和定位: 上海期货交易所(上期所/SHFE) 成立:1990年11月26日...

  alphonse   2025年08月07日   318   2   0 学习资源经验分享高频交易

继续跟着天山老妖的QuantFabric教程学习,这次的内容是关于开发环境的搭建。虽然看起来是基础操作,但实际上每一个细节都很重要。工欲善其事,必先利其器,一个配置良好的开发环境能让后续的开发工作事半功倍。 这次学习让我意识到,量化交易系统的开发不只是写代码,还涉及到Linux服务器管理、网络配置、安全设置等多个方面。特别是在实际部署时,很多看似简单的配置问题可能会成为系统稳定性的隐患。 开发工具的选择与配置 GitBash:Windows下的Linux命令行体验 对于在Windows系统下开发Linux程序的我们来说,GitBash是一个必不可少的工具。它不只是Git的客户端,更是一...

一、引言 近年来,随着中国资本市场的快速发展和机构化程度的不断提升,因子投资(FactorInvesting)逐渐成为量化研究的重要方向。其中,小市值因子(SizeFactor)与红利低波因子(Dividend&LowVolatilityFactor)是最为典型的两类策略,分别代表着成长性与稳健性的两种投资风格。 小市值策略依靠规模较小企业的成长潜力,在市场复苏与扩张阶段往往能够获得较高的超额收益。然而,小市值股票普遍流动性不足、业绩波动较大,导致其在市场下行阶段容易出现剧烈回撤。与之形成对照的...

框架基本方法 基础方法说明 该策略为事件驱动性策略,需要实现框架中约定的事件回调方法,实现后回测、仿真、实盘通用。 策略头部需要默认引用内置API,代码为:frompanda_backtest.api.apiimport,后文不再重复赘述。 接下来具体介绍框架各个事件回调方法,必选代表必须在策略中实现。 策略初始化(必选) 函数:initialize 描述:策略初始化,主要用于初始化策略上下文中的变量,只在策略启动时运行一次 代码 python definitialize(context): 参数 |字段|类型|描述| |--|--|--| |context|Context...

上一篇文章我们介绍了高频因子的流动性因子、量价相关性因子,这一篇继续介绍筹码分布因子,并在因子分析的基础上加入策略回测。 研究环境利用聚宽因子分析API,构建因子函数类;研究在日内高频分钟级数据中挖掘构建高频因子,对该因子进行有效性检验,并利用回测平台进行回测。 一筹码分布因子 1.1因子介绍 第六大类因子为筹码分布因子。筹码分布旨在刻画股票持有人的持仓成本分布情况。筹码分布能够直观地展示不同价格区间上的持仓数量,从而帮助投资者判断市场的平均持仓成本。如果大部分筹码集中在较低的价格区间,说...

继续跟着天山老妖的QuantFabric教程深入学习,这次聚焦于开发环境搭建的核心组件——Qt和CMake的安装配置。如果说前面的基础环境搭建是地基,那么Qt和CMake就是框架的主体结构。没有稳固的开发工具链,再好的策略想法也无法落地实现。 这次的学习让我深刻体会到,量化交易系统开发不仅需要扎实的金融知识和编程技能,更需要对开发工具有深入的理解。特别是在Linux环境下配置图形化开发环境,每一个细节都可能影响后续的开发效率。从版本选择到环境变量配置,从账户验证到套件检测,看似简单的安装过程实际上蕴含着丰富的技术细节。 Qt安装:图形化开发的基石 版本选择的策略考量 在Qt的版本选择上...

一、引言 在A股量化投资中,构建完善的因子库对于策略研发和回测效率至关重要。传统基于CSV文件存储因子数据存在冗余、跨周期计算效率低和扩展性差等问题,而通过建立数据库式的因子库,可以显著提升数据管理和检索效率。本项目旨在基于AkShare和MongoDB构建一个A股的价格-成交量因子库,将常见的技术指标和量价指标按日保存,为选股和策略开发提供数据支持。借助开源工具,我们可以批量获取数据、自动清洗和计算因子,并方便地存入数据库,为后续的回测与分析打下基础。 二、技术架构与依赖工具 2.1该项目采用...

继续深入天山老妖的QuantFabric教程学习之旅,这次的内容涵盖了两个关键主题:Git子模块的管理实践和C单例模式的设计实现。看似技术细节各异,但实际上都体现了系统工程中的核心思想——模块化管理和资源统一控制。 在量化交易系统开发中,代码组织和架构设计的重要性不言而喻。Git子模块解决了多团队协作中的代码复用问题,而单例模式则确保了系统关键组件的唯一性和一致性。工程实践中的每一个设计决策,都直接影响着系统的可维护性和稳定性。 这次学习让我深刻认识到,量化交易系统的复杂性不仅体现在算法策略上,更体现在工程架构的精细化管理。从版本控制到设计模式,从编译构建到资源管理,每一个环节都需要深入的...

<fontcolor="brown"一、开篇</font <fontcolor="red"工作流解锁量化大众化,全民玩转量化时代已来!</font ![01pandaai.png](7) 上篇文章详细介绍了PandaAI线性模型工作流的完整流程,同时也阐述了策略回测分析与因子相关性分析的具体步骤。正如我们之前所强调的——任何任务都能拆解为清晰可控的工作流,因此我们将进一步把机器学习相关工作流应用到量化分析场景中。 在下面连接中可以看到关于PandaAI工作流的详细介绍和多因子模...