接上一篇:Alphagen学习笔记(1.Qlib因子生成部分)。接下来尝试简化和重写qlib因子生成(更准确说应该是“因子计算”),即:1.替换成本地parquet文件行情数据2.再按表达式计算出因子值。 行情和因子值在各个模块中传递顺序为从左至右:data—loader—stock_data。  小白编程还是要多用deepseek。我刚开始采用胡乱试的办法,把以上各个模块扔进对话框,先帮我解释一下代码,然后阐明接下来工作目标是要把mongodb行情数据替换成本地c...
<fontcolor="brown"一、引言</font <fontcolor="red"强化学习已经开始“闯”量化!</font  在参加《量变学院》第五期线下课程后,我首次接触到AlphaGen这一基于强化学习的公式化Alpha因子挖掘框架。其核心思想是通过策略梯度方法(如PPO算法)自动生成具有协同作用的Alpha因子集合,从而提升量化投资策略的性能。为深入理解《GeneratingSynergisticFormulaicAlphaCollec...
AlphaGenRL训练参数说明 概述 `scripts/rl.py`是AlphaGen项目的核心训练脚本,使用强化学习(RL)和大语言模型(LLM)来自动发现和优化Alpha因子。本文档详细说明了`main`函数的所有参数。 参数详解 1.`random_seeds` 类型:`Union[int,Tuple[int]]` 默认值:`0` 作用:设置随机种子,确保实验的可重现性 bash 单个种子 pythonscripts/rl.py--random_seeds42 多个种子(会依次运行多个实验) pythonscripts/rl.py--random_seeds"(0,1,2,...