一:PandaAI仿真实盘种子用户招募:200席专属资格,定义量化新工具 我们不是在找「用户」,而是在寻「战友」——那些真正沉心做策略、懂交易的实践者,和我们一起打磨下一代量化工具,让智能交易更贴合实战需求 1.1成为种子用户,你将独占这些专属权益 5000+初始算力包:直接到账,无门槛支持策略回测、因子深度研究、仿真实盘交易,算力自由一步到位 产品共建者身份:你的每一个建议都能直达产品核心团队,功能优先级、迭代方向由你参与决定 线下课门票直通票:完成简单内测打卡任务,即可锁定行业大咖策略分享...
<fontcolor="brown"一、开篇</font <fontcolor="red"一切任务都可以抽象成一个工作流!</font  要踏入量化投资的复杂领域,本需艰难拼凑编程、交易实操、高阶数学、AI算法、金融市场等知识拼图。但掌握已专业定制的“工作流”这一核心绝技,就能直接复用专业投资者的经验路径——像搭积木般调用现成流程,把复杂任务拆解成清晰步骤,让新手也能快速对齐专业视角,少踩坑、少绕路,高效逼近量化投资的核心能力。 在20...
框架基本方法 基础方法说明 该策略为事件驱动性策略,需要实现框架中约定的事件回调方法,实现后回测、仿真、实盘通用。 策略头部需要默认引用内置API,运行代码为:frompanda_backtest.api.apiimport,后文不再重复赘述。 注意事项:工作流里使用下单函数时要在代码里引用frompanda_backtest.api.apiimporttarget_future_group_order,buy_open,sell_open,buy_close,sell_close 仿真盘里绑定工作流下单时要改为引用frompanda_trading.trading_common.api...
工作流示例 为方便大家使用,我们提供了以下模版,供大家学习参考,新建一个工作流,直接拖对应的json到窗口中即可(json可找小助理领取),可以自己尝试修改参数和模型。 --- 直接收益率预测排序 🌟核心思路 利用XGBoost模型直接预测股票未来的收益率,并根据预测值进行排序和分组。 📌实施流程 1.输入因子矩阵 2.使用XGBoost模型进行回归训练,输出预测值:  3.对预测收益率进行排序...
量化算子工具类使用文档 本文档汇总介绍了因子编写方法量化算子工具类(公式版)中所有函数的功能、输入/输出说明以及使用示例。所有函数均以静态方式提供,调用时直接使用函数名称,无需添加类名前缀。 示例中均采用如下调用格式,例如: python 返回收盘价序列 CLOSE python 返回CLOSE(收盘价)和VOLUME(成交量)的20日滚动相关性系数序列 CORRELATION(CLOSE,VOLUME,20) python 返回收盘价、最高价、最低价三者的均值序列 (CLOSE+HIGH+LOW)/3 --- 基础因子 |因子名|说明| |-|-| |CLOSE|收盘价...
一、参与背景:为何加入PandaAI种子用户计划 当我看到PandaAI发布的"仿真实盘种子用户招募"计划时,立刻被其中"定义量化新工具"的愿景所吸引。与普通产品内测不同,这次招募明确提出寻找"战友"而非单纯"用户",强调与真正沉心做策略、懂交易的实践者共同打磨下一代量化工具。这种共创模式让我对PandaAI团队的专业态度产生信任,于是毫不犹豫地提交了申请。 作为有一定量化交易经验的参与者,我特别看重计划中提到的几大专属权益:5000+初始算力包可无门槛支持策略回测和仿真实盘交易;产品共建者身份能让建议直达产品核心团队;还有与产品团队、资深策略开发者同群交流的机会。这些权益不仅实用,更体现出P...
一、引言 近年来,随着A股市场机构化率的显著提升,指数增强策略(IndexEnhancement)逐渐成为量化投资领域的重要研究方向。与传统被动指数投资不同,指数增强策略旨在在严格跟踪基准指数风格、行业权重和风险暴露的前提下,通过系统化的选股、因子构建与组合优化获取稳定的超额收益(Alpha),从而在风险可控的条件下增强整体收益率。 中证1000指数作为反映中国中小市值公司整体表现的宽基指数,其成分股数量多、行业分散度高、个股波动性强,为基于量化因子进行指数增强提供了广阔空间。尤其是在近年来的市...
一般投研写代码开始,环境会固定下来,生产时的环境更是如此。但是一旦需要新建更新迁移环境,添加删除更新相关的库,还是会耗费不少时间精力。我写几个目前为止可能有用的实践经验。 管理工具 conda用于环境创建管理是最好,对库的安装管理就未必(确实比较慢)。pip的资源最全面,较新mamba的管理也很全面,逻辑更优化速度会快很多。 库源 就我们金融量化领域最重的几个库源:-cconda-forge-cpytorch还有英伟达。 添加到默认路径里condaconfig--addchannels-conda-forge 如果慢,可以把清华和阿里的也添加进去,但优先级设置低一点。 安装更新 确定本次...
 
为什么改造gplearn 1. 框架简洁代码精炼。之前被Qlib深度折磨过(以前文章写过https://www.pandaai.online/community/article/130)。Qlib投研全流程环节多模块多,而后期可能提交维护投入变少越来越臃肿。gplearn就是['genetic','functions','program','fitness'],然后再加上一基础设施'utility'五个部分。核心因子公式program的遗传变异进化操作就是围绕着一个list列表对象实现的(再次...
 
篇分享研报中提及的几个由高频数据构建的因子,以及由当天1分钟K线的形态偏离正态的假设做的检定值构建的因子 研报重点分享 高频因子v.s.高频因子低频化 高频策略通常是基于level2的行情数据包含个股分钟K线、盘口快照、委托队列、成交明细等,在实盘利用实时数据计算结果后在极小时间内做买卖。 高频因子相较于低频因子的挑战有以下幾點 1.<fontsize=4IC衰减快</font,需要更频繁的更新因子值以捕捉高频信息,带来的代价是换手率的增加。 下图为研报中对收益率方差的高低频衰减对比,可以看...
<fontcolor="brown"一、引言</font <fontcolor="red"统计是量化分析中的核心关键环节!</font  上次介绍过统计学的重要性,还说明了它的词源的和古代国王必修课的背景知识。从这次开始,我们正式进入统计基础部分,现在也是时候换一种思路学习统计学了。 对我而言,因为在学习量化的过程中必须攻克统计学这道难关,所以几年前我强迫自己报名了《中级统计》考试。该考试的教材内容包含统计学与数据、数据描述、参数估计、假设检验等章...
 
QuantFabric系统架构革新:共享内存驱动的超低延迟新时代 继续跟随天山老妖的QuantFabric教程深入学习,这次迎来了系统架构的里程碑式重大升级。如果说之前的HFTrader展现了纳秒级的极致性能,那么这次基于共享内存的架构革新则是从根本上重构了系统的通信基础,将低延迟性能提升到了新的高度。 这次升级的核心在于彻底消除TCP通信的延迟瓶颈,通过共享内存(SHM)技术实现内存级速度的数据传输。同时,引入全新的XQ策略进程组件,实现了策略层与基础设施层的完全解耦,既保证了核心组件的稳定性,又提供了策略开发的极致灵活性。 这次学习让我深刻认识到,优秀的系统架构不仅要追求性能的极限,...
 
<fontcolor="brown"一、引言</font <fontcolor="red"Python的核心不是“炫技”,而是“实用”</font  到此,我们已探讨完Python核心且重要的知识点,涵盖数据结构、流程控制、函数用法、类与对象,以及Numpy、Pandas等常用库。而在本次“Python进阶2”的内容中,我们将进一步介绍Python的其他高级用法与科学计算库——不仅会讲解Python风格(Pythonic)及各类高级编程技巧,还会重点...
<fontcolor="brown"一、引言</font <fontcolor="red"想成为王者,必须懂统计</font  此前已经写过几个关于量化分析“代码篇”的分享,接下来要进入的,既是量化领域的核心内容,也是我们很多文科生觉得难度最大的“数理”部分,而我们“数理”的第一站,就是“统计学”。  在量化分析的数理基础里,线性代数、微积分、概率统计、计量经济等缺一不可,但其中统计检验直接关系到数据结论的可靠性——...
 
--- 吐槽: 公式我习惯用latex打,但是好像上下角标有问题,编辑界面是正常的,比如最后一行,但是实际上网页显示不出来,我用图片替换了一部分,然后我发现图片大小也没法改,看得很丑,已经告诉it了,先凑付看吧,等改完再说吧。 --- 引言 金融世界本质上是一个由不确定性驱动的大规模、实时的“数据实验室”。每一天,全球市场都在产生海量的数据——股票价格如心跳般起伏,宏观经济指标牵动着亿万资金的流向,公司财报则像一次次突然的“...
2025-04-07
2025-08-26
2025-07-24
2025-07-25
2025-09-15
2025-10-11
2025-10-28
2025-09-27
2025-10-08
2025-10-12