<fontcolor="brown"一、开篇</font <fontcolor="red"一切任务都可以抽象成一个工作流!</font ![01PandaAIlogo.png](1) 要踏入量化投资的复杂领域,本需艰难拼凑编程、交易实操、高阶数学、AI算法、金融市场等知识拼图。但掌握已专业定制的“工作流”这一核心绝技,就能直接复用专业投资者的经验路径——像搭积木般调用现成流程,把复杂任务拆解成清晰步骤,让新手也能快速对齐专业视角,少踩坑、少绕路,高效逼近量化投资的核心能力。 在20...

最近读了一篇关于预测市场套利的论文,让我对"市场效率"这个概念有了全新的认识。作为一个关注量化交易和市场微观结构的人,这篇论文揭示的现象既令人震惊,又在情理之中。 核心发现很简单:在2024年美国大选期间,一群神秘的套利者从Polymarket这个预测市场平台中,悄无声息地提取了约4000万美元的利润。 他们没有预测谁会当选,没有分析选情走势,甚至不关心最终结果。他们只做一件事:在市场定价出现错误的瞬间,闪电般地完成买卖,锁定无风险利润。 这个故事让我想起华尔街的一句老话:"在别人恐慌时贪婪,在别人贪婪时恐惧。"但这些套利者做的更极致——他们在别人混乱时,保持着机器般的冷静。 --- ...

<fontcolor="brown"一、引言</font <fontcolor="red"Python是一种“胶水语言”,能够整合多种库与工具!</font ![image.png](1) Python是“胶水语言”,能够将各种不同的库和工具粘合在一起,创造出强大的解决方案。 在上一次的介绍中,我们已经讲解了Python基础的4个模块(数据结构、流程控制、函数用法、面向对象);本次将聚焦Python的进阶使用方法,以及数据分析领域的核心工具库。对于刚开始接触量化分析或数据分析初...

继续深入天山老妖QuantFabric教程的技术精髓,这次我们踏入了高频交易的核心——低延迟技术的全栈优化。如果说前面的HFTrader系统架构让我们看到了高频交易的整体框架,那么这次的低延迟技术分享则是深入到每一个技术细节的极致追求。从硬件超频到内核旁路,从CPU隔离到零拷贝优化,每一个环节都在诠释什么叫"毫秒必争,纳秒见真章"。 在这个以纳秒计算的技术世界里,250纳秒的ef_vi延迟与2-3微秒的标准网络栈延迟之间的差距,可能就是盈利与亏损的分水岭。这不仅仅是技术的较量,更是对工程极限的挑战和对商业价值的精准把握。 这次学习让我深刻认识到,高频交易的低延迟优化是一门综合性的系统工程:...

<fontcolor="brown"一、引言</font <fontcolor="red"文科生学量化需要学编程吗?</font ![image.png](1) 上次我们已经学习了Python安装与配置的相关内容。这次将运用已学的编程知识,简要介绍Python的4个基础模块:数据结构、流程控制、函数用法、类与对象。在开启编程学习之旅前,我们需要明确为什么要学编程,以及该怎么学。 <fontcolor="brown"二、编程</font <fontcolor="darkblue"为什...

踏入天山老妖QuantFabric教程的技术巅峰——HFTrader高频交易系统,这是整个学习旅程中最激动人心的核心篇章。如果说前面的环境搭建、工具配置是在打地基,那么HFTrader就是真正的速度与技术的终极较量。在这个以纳秒计算的高频交易世界里,1008纳秒的最小延迟和4184纳秒的最大延迟,每一个数字都代表着技术实力的极致展现。 HFTrader作为QuantFabric量化交易系统的高频核心,承载着将毫秒级市场机会转化为实际收益的重任。从四线程架构设计到CPU亲和性绑定,从无锁队列优化到多层风控体系,每一个技术细节都在诠释什么叫"细节决定成败"。这不仅仅是一个交易系统,更是现代金融科...

<fontcolor="brown"一、引言</font <fontcolor="red"强化学习已经开始“闯”量化!</font ![image.png](8) 在参加《量变学院》第五期线下课程后,我首次接触到AlphaGen这一基于强化学习的公式化Alpha因子挖掘框架。其核心思想是通过策略梯度方法(如PPO算法)自动生成具有协同作用的Alpha因子集合,从而提升量化投资策略的性能。为深入理解《GeneratingSynergisticFormulaicAlphaCollec...

你有策略我帮助实现,你没策略我提供 别再让通达信数据“躺平”!Python编程帮你把行情变成赚钱信号,3天上手,免费领工具包 你是不是每天盯着通达信K线图,翻遍几十页数据却找不到精准买卖点?明明知道行情里藏着机会,却被手动选股、公式编辑搞得头大,眼睁睁看着好标的溜走? 现在不用愁了!我帮100+股民解决过“数据不会用、策略不会写”的问题,用Python编程打通通达信的“任督二脉”—— ✅自动爬取通达信日线/分钟线数据,不用再手动导出Excel; ✅一键回测你的交易策略(比如MACD金叉、均线多...

继续深入天山老妖的QuantFabric教程学习之旅,这次的内容涵盖了两个关键主题:Git子模块的管理实践和C单例模式的设计实现。看似技术细节各异,但实际上都体现了系统工程中的核心思想——模块化管理和资源统一控制。 在量化交易系统开发中,代码组织和架构设计的重要性不言而喻。Git子模块解决了多团队协作中的代码复用问题,而单例模式则确保了系统关键组件的唯一性和一致性。工程实践中的每一个设计决策,都直接影响着系统的可维护性和稳定性。 这次学习让我深刻认识到,量化交易系统的复杂性不仅体现在算法策略上,更体现在工程架构的精细化管理。从版本控制到设计模式,从编译构建到资源管理,每一个环节都需要深入的...

继续跟着天山老妖的QuantFabric教程深入学习,这次聚焦于开发环境搭建的核心组件——Qt和CMake的安装配置。如果说前面的基础环境搭建是地基,那么Qt和CMake就是框架的主体结构。没有稳固的开发工具链,再好的策略想法也无法落地实现。 这次的学习让我深刻体会到,量化交易系统开发不仅需要扎实的金融知识和编程技能,更需要对开发工具有深入的理解。特别是在Linux环境下配置图形化开发环境,每一个细节都可能影响后续的开发效率。从版本选择到环境变量配置,从账户验证到套件检测,看似简单的安装过程实际上蕴含着丰富的技术细节。 Qt安装:图形化开发的基石 版本选择的策略考量 在Qt的版本选择上...

上一篇文章我们介绍了高频因子的流动性因子、量价相关性因子,这一篇继续介绍筹码分布因子,并在因子分析的基础上加入策略回测。 研究环境利用聚宽因子分析API,构建因子函数类;研究在日内高频分钟级数据中挖掘构建高频因子,对该因子进行有效性检验,并利用回测平台进行回测。 一筹码分布因子 1.1因子介绍 第六大类因子为筹码分布因子。筹码分布旨在刻画股票持有人的持仓成本分布情况。筹码分布能够直观地展示不同价格区间上的持仓数量,从而帮助投资者判断市场的平均持仓成本。如果大部分筹码集中在较低的价格区间,说...

  迪仔   2025年08月23日   599   1   0 Python多因子模型量化策略经验分享

概述 PandaQAuantFlow开源之后,社区很多小伙伴去下载也本地部署了,但是本地的行情数据只到2025-05-15,没法使用最新的数据进行回测。好在panda_factor里面提供了自动更新数据库的功能,以下笔者将简单介绍如何进行手动更新。 1.更新之前 在更新之前,需要按照github上的说明部署好本地环境,部署跟着这个https://github.com/PandaAI-Tech/panda_quantflow里面的readme来,B站上还有[保姆级别安装视频](https://...

  AlphaSmith   2025年08月21日   340   1   0 数据清洗数据存储

概述 最近由于Tushare服务故障,导致无法获取到行情数据,捉急之下,笔者想起miniqmt也是可以获取数据的,而且还能拿到一年的分钟频率数据,刚好最近也想着复现下高频数据的研报。那么,下面笔者就简单介绍下miniqmt如何获取数据。 1.开通账户 在使用miniqmt之前,需要找券商开通相关的服务,各位可以联系pandaai官方小助手,他们有开通的渠道,一般审核验证大概2-3个工作日就差不多了。开通成功之后,对接人员也会给相应的教程,指导如何使用,大家开通之后,直接参考教程即可。 2.数...

  AlphaSmith   2025年08月19日   300   1   0 Python数据API新手入门历史数据

继续跟着天山老妖的QuantFabric教程学习,这次的内容是关于开发环境的搭建。虽然看起来是基础操作,但实际上每一个细节都很重要。工欲善其事,必先利其器,一个配置良好的开发环境能让后续的开发工作事半功倍。 这次学习让我意识到,量化交易系统的开发不只是写代码,还涉及到Linux服务器管理、网络配置、安全设置等多个方面。特别是在实际部署时,很多看似简单的配置问题可能会成为系统稳定性的隐患。 开发工具的选择与配置 GitBash:Windows下的Linux命令行体验 对于在Windows系统下开发Linux程序的我们来说,GitBash是一个必不可少的工具。它不只是Git的客户端,更是一...

  alphonse   2025年08月16日   576   0   0 高频交易学习资源经验分享

主动买卖,是为了衡量成交是受买方驱动还是卖方驱动。我们使用批量成交划分法来区分买方成交量和卖方成交量,方法如下: ![image.png](1) ![image.png](2) 关键创新:用t分布实现“连续映射”。传统方法(如逐笔对比挂单价)是离散判断(要么主动买,要么主动卖),而这里通过t()函数实现了连续划分:当价格变动为正且大时,t()输出接近1,主动买入金额接近总成交额;当价格变动为负且大时,t()输出接近0,主动买入金额接近0。 批量成交划分法以价格变动作为自变量,为了防止不同个股价...

  18958283423   2025年08月15日   265   0   3 学习资源

上一篇文章我们介绍了高频因子的高阶特征因子,这一篇继续介绍流动性因子、量价相关性因子,并在因子分析的基础上加入策略回测。 研究环境利用聚宽因子分析API,构建因子函数类;研究在日内高频分钟级数据中挖掘构建高频因子,对该因子进行有效性检验,并利用回测平台进行回测。 一流动性因子 1.1因子介绍 第四大类因子为流动性因子。流动性刻画股票交易所需要的时间和成本,一般来说,流动性较差的个股通常有更高的预期收益,这是对流动性风险的风险补偿。因此,流动性因子通常表现为流动性越低,未来收益越高的特征(也会...

  迪仔   2025年08月06日   497   1   0 Python多因子模型学习资源经验分享

高频交易深度解析:从历史演进到技术实现的完整图景 继续跟着天山老妖的QuantFabric教程学习,这次的内容让我对高频交易有了更全面和深入的认识。如果说前面两篇文章是在讲"工具",那么这一篇就是在讲"战场"——高频交易这个充满传奇色彩又极具技术挑战的领域。 从17世纪罗斯柴尔德家族用信鸽传递消息进行跨国套利,到今天用纳秒级系统捕捉微观价差,高频交易的本质始终未变:在信息传递的速度差中寻找利润。但技术的进步让这个"速度差"从几天缩短到了几纳秒,竞争的激烈程度也达到了前所未有的高度。 什么是高频交易? 高频交易(HFT)本质上是一种程序化交易,目标是从极其短暂的市场变化中获取利润。这种"...

  alphonse   2025年07月30日   446   1   1 高频交易学习资源经验分享

<fontcolor="brown"一、引言</font <fontcolor="red"TheFutureofCodingis‘TabTabTab’</font ![image.png](1) OpenAI创始成员AndrejKarpathy曾说过:"编码的未来是按Tab键自动补全"。 Cursor的出现推动开发者角色从“编写代码”转向“引导AI生成正确代码”。未来编程将高度依赖AI自动化补全能力,开发者只需通过反复按“Tab键”即可快速生成代码。目前,Cursor、GitHub...

我们运用统计上的显著性来检验因子是否有效。但是简单地使用统计检验得到的因子有时并不一定是靠“实力”,还有很大一部分“运气”成分。我们把显著性水平设为α,如果我们检测100个因子,至少有1个因子显著的概率高达1−(1−5%)^100=99.4%!因此,单纯检验每一个因子存在缺陷,我们需要引入多重检验的方法,同时检验多个假设(hypothesis)。 一、多重检验(multipletesting) 1.1核心思想 多重检验的核心思想可分为两种。一种是为了控制家族错误率(Family-wiseEr...

  18958283423   2025年07月28日   159   0   0 学习资源

<fontcolor="brown"一、开篇</font <fontcolor="red"工作流解锁量化大众化,全民玩转量化时代已来!</font ![01pandaai.png](7) 上篇文章详细介绍了PandaAI线性模型工作流的完整流程,同时也阐述了策略回测分析与因子相关性分析的具体步骤。正如我们之前所强调的——任何任务都能拆解为清晰可控的工作流,因此我们将进一步把机器学习相关工作流应用到量化分析场景中。 在下面连接中可以看到关于PandaAI工作流的详细介绍和多因子模...