1.概述 这两天看到一个开源项目,[TradingAgents项目GitHub](https://github.com/TauricResearch/TradingAgents)还挺火的,下来来玩了玩,给大家分享下。  这涨星的速度还是可以的。 2.安装 安装就看github上的readme页有介绍。  先把各个库安装好,如果没有安装conda的,需要先安装下conda。 环境安装好之后,还需要设置KEY,一共有两个  将传统的收益波动、振...
<fontcolor="firebrick"一、背景</font Alpha101 <br Weemphasizethatthe101alphaswepresentherearenot‘toy’alphasbutreal-lifetradingalphasusedinproduction. <fontcolor="red"101个阿尔法因子并非用于理论研究的“玩具”因子,而是在实际交易中使用的真实因子。</font  此前,在《Alp...
<fontcolor="brown"一、背景</font Alpha101 <br Verycoarsely,onecanthinkofalphasignalsasbasedonmean-reversionormomentum. <fontcolor="red"大致来说,Alpha信号可基于均值回归或动量来理解。</font  量化交易作为金融市场的重要组成部分,在过去几十年中经历了显著的发展与演变。在这一领域,Alph...
报告原文下载链接:https://pan.baidu.com/s/1ab9uNgS2Ydhimlu1jf5raA提取码:hgei 本篇研报以趋势资金为切入点:通过日内分钟级别的成交量来识别趋势资金,再通过对应的价、量数据推测其交易行为,构建有效的选股因子。该因子主要利用了市场的无效性,根据A股市场散户占比高,定价效率较低的特征,得出主力资金行为更容易产生超额收益机会这一结论,并将将主观交易经验(如“跟庄策略”)转化为可量化的指标。 由于获取数据上的限制,我在复现研报时只采用了2024-03-...
1.概述 行业中性化(IndustryNeutralization)旨在从因子中剔除行业所带来的系统性偏差,使因子能够更真实地反映个股的特质(idiosyncraticcharacteristics)。许多因子天然地与特定行业相关联,比如市盈率因子在金融行业普遍较低,而在科技行业可能较高。 行业中性化通常通过分行业去均值或引入行业哑变量回归等方式实现,处理后因子值在行业间趋于均衡,从而避免策略因行业偏好而产生非预期的暴露。经过行业中性化处理的因子,更具普适性和解释力,在多因子模型、因子排序及回...
开篇:什么是量化投资? 想象你是一个经验丰富的菜市场买菜高手。每次买菜时,你都有自己的一套"规则": 西红柿要挑红润饱满的 价格比平时低20%时大量采购 避开周末人多的时候去买 量化投资就是把这套"买菜经验"用代码写出来,让电脑帮你在股市里"买菜"。 传统投资靠感觉和经验,量化投资靠的是数据+规则+纪律执行。就像用GPS导航代替问路一样,虽然偶尔会绕路,但长期看更靠谱。 为什么从双均线开始? 双均线策略是量化投资的"九九乘法表",简单但包含了完整的投资逻辑: 趋势判断:短期均线长期均线...
1.概述 在计算完因子数据之后,进行下一步的模型训练之前,通常需要对因子数据进行预处理,以及中性化处理。其中预处理比较简单,一般就是3倍MAD截断,zscore标准化,缺失值填充为0。中性化稍微复杂一些,本文将从市值中性化开始介绍如何进行市值中性化,下一篇将介绍如何进行行业中性化。 2.市值中性化 2.1市值中性化的必要性与逻辑 市值中性化是因子中性化处理中最常见且重要的一种,其核心目的是剔除因子值中由于市值(Size)因素引起的系统性影响,使得因子能够更纯粹地反映其自身的信息,从而提升因...
引言 在Niederhoffer和Osborne的证券交易所的市场做市与价格反转(1996)一文中,作者通过观察并举例股票价格在连续交易的变动ΔYt-1,ΔYt试图寻找在时序上的运动规律,并且得出如股票价格的短期波动并非完全随机,而是由市场制造机制和投资者行为共同塑造等结论。其中,作者认为股票价格在高频数据中存在显著的负自相关特性,即前一期价格ΔYt-1上涨会增加本期ΔYt下跌的概率,反之亦然。作者将这种现象归因于交易所做市商制度和限价订单簿的非均匀分布等市场微观结构因素。另外一个相对更近期的例...
1.概述 平时大家搭建自己的因子库,肯定要会涉及到行情数据的下载,因子库的计算入库等工作,股票数据相对来说数量比较大,更新一次需要不少时间,本文将分享如何通过多线程的方式加快数据的下载,以此为例,也可以扩展到其他大数据任务的计算中。 本文使用Tushare作为数据源,下载A股市场所有股票的日线数据(open,high,low,close,vol),我们将分析串行跟并行两种方法在时间效率上的表现。 2.串行下载 串行下载是最直观的实现方式,按顺序逐个处理每只股票的数据下载请求。注册好tushar...
1.概述 笔者最近搭建了一套因子库,参考的是《20230522-招商证券-AI系列研究之一:端到端的动态Alpha模型》附录中的因子,但因子数量还是有限,于是决定引入一些常见的因子库,本文将分享如何用cursor来帮我们快速生成alpha101因子。 2.cursor安装与激活 从官网下载cursor,新注册的用户有免费的使用次数,如果次数用完,可以到某宝上去购买账户,也可以自己充值。  安装好之后,就可以在右边打开对话框,进行对话式编程了,选择@可以指定代码...
一、引言 在量化分析领域,因子库的有效构建与管理是实现精准投资决策的核心环节。为满足因子数据存储与高效分析的需求,选择合适的数据库至关重要。本文专注于本地MongoDB数据库的搭建,以及Python在该数据库配置与因子数据处理中的应用,旨在为量化分析过程中因子库的本地化配置提供系统性的解决方案。  二、MongoDB用于多因子分析的优势 传统的关系型数据库就像一个个整齐排列的小格子房间,每个房间的大小、形状都得提前规定好,东西得规规矩矩地放进去。而Mongo...
上篇[基于《AI系列研究之二:多模型集成量价Alpha策略》理论分析](https://www.pandaai.online/community/article/90) 本篇文章会对其中各部分进行代码研究 项目需求分析与技术架构设计 业务需求梳理 项目的核心目标是构建一个多模型股票预测系统,具体需求包括: 数据层面的要求: 股票池:全A股票市场,但需要剔除ST、ST股票、退市股票以及上市不满三个月的新股 数据源:使用数据库中的日线量价数据,包含高开低收价格、成交量以及市值信息 预测目标:T+1日至T+11日的复权日内VWAP价格收益率 数据预处理:采用3倍MAD截断、zscore标...
引言 招商证券的这份研究报告代表了传统金融机构在人工智能应用领域的重要探索。作为AI系列研究的第二篇,该报告聚焦于多模型集成技术在量价Alpha策略中的应用,为量化投资提供了一套完整的技术解决方案。 通过深入研读,我发现这份报告最大的价值在于其模型选择的系统性思考和集成策略的实用性设计,为行业提供了宝贵的方法论参考。 --- 第一部分:为什么需要多模型集成? 1.1传统单一模型的根本局限 在量化投资领域,单一模型面临着无法克服的结构性缺陷: 预测精度的天花板效应 即使是最先进的单...
一、引言 在金融市场投资策略研究领域,小市值和红利低波策略近年来备受关注。在过往研究在这两种策略应用中存在一定缺陷,本文旨在深入剖析并优化,本次着重解决上一次研究中小市值年化收益不足和回撤波动较大的问题。 [小市值与红利低波的互补研究:风险对冲与收益增强的双重路径](https://www.pandaai.online/community/article/76) 1.1上文研究不足之处 上文在优化小市值和红利低波动策略回撤上不够具体,主要体现小市值最大回撤高达34.78%,可以引入熔断机制或者宏...
以下是依据两篇研报因子的文字描述,通过deepseek/pandaai解读生成的Python代码实现,保留了AI生成过程和注释。意识到很多学员用户也正在做这个工作,为节约人力算力能源,在量变学院社群分享一下。   这里是上篇《中金价量》的部分: 通过网盘分享的文件:alpha191中金量价_dspandaai(上).docx 链接:https://pan.baidu.com/s/1O9pvVkP_C_N54kbwAN...
1.1背景 这几天踩了不少数据的坑,趁热打铁总结一下,也希望能帮大家少走点弯路。数据清洗这块,很多人觉得是琐事,其实它对最终策略效果的影响非常大。模型的好坏,很多时候不是算法决定的,而是你喂进去的数据质量决定的。下面我举几个例子,大家就懂了: 1.数据不清洗,就像你要做个火爆肥肠结果菜都没洗,味道能对吗?哈哈哈。 2.第一次拿到因子数据,乍一看数值有点大,就想着直接log一下压缩,结果模型训练完发现还是在学风格因子,整段预测方向跑偏。 3.有些字段比如ROE、净利润增长率,值是0或者极端异常,模...
上一篇文章中我们对高频因子的优势和类型做了简要介绍,从这篇文章开始,我们将对每一大类因子做介绍,并从中选取具体一例因子,实现从数据构建到测试评估的整个过程。 研究环境利用聚宽因子分析API,构建因子函数类;研究在日内高频分钟级数据中挖掘构建高频因子,并对该因子进行有效性检验。 一、动量反转因子 1.1动量反转因子 第一类因子为动量反转因子。动量反转因子通常由过去一段时间的特定类型的涨跌幅构造,其因子收益一方面可能来源于非理性投资者的行为偏差造成的错误定价,另一方面也可能来源于承担特定风险获得...
对于刚转向因子投资的交易者,选择站在前辈肩膀上复现已有的研报因子是不可回避的学习途径。 PandaAI集成了数据/回测/分析框架及代码AI助手一体,为因子学习探索提供了极大便利。 2022年中金《价量因子手册》对于量价覆盖全面,不少量价因子在报告期和以后的很长时间均表现良好。  刚开始尝试的是动量&反转因子:  构建方式和计算公式如下:  步骤如下: Step1:进入[pandaai因子大赛官...
1.概述 这篇文章我们将分享《中金公司-量化多因子系列(6):关于动量,你所希望了解的那些事》中关于动量因子的适用场景,研报中提到截面分域中,动量特征在高机构覆盖、大市值、低波动、高价值的股票池中更明显;而反转效果在低覆盖、小市值、高波动、低流动性、低价值的股票池内更为显著。本篇文章将使用PandaAI平台快速构建市值、波动性、流动性因子再叠加动量因子,验证研报中关于动量的结论。本文也算是线性多因子组合的入门教程,大家看完就明白一点都不难了。 2.市值因子 相信大家都听说过小市值策略,今天我们...
2025-04-07
2025-08-26
2025-07-24
2025-07-25
2025-10-11
2025-09-15
2025-10-28
2025-10-08
2025-10-12
2025-09-27