第四周【多策略调整与优化】 这周是训练营最后一周,核心目标很明确:把前几周“跑得起来但很久不出交易”的策略做改造,让它在仿真实盘里更容易产生交易信号与结果,完成「多策略修改交易条件并运行」的验证截图。 结合教程操作下来,我本周主要完成了两类任务:期货多品种策略与定时交易策略,整体体验是:PandaAI把“策略生成/修改/排错+运行容器化”串成了一个闭环,新手也能靠和AI对话把策略快速迭代出来。 本周任务回顾 A.期货多品种策略:从单标的扩展到多合约监控/交易 基于第二周的趋势策略框架(均线趋势判断:均线之上偏多、均线之下平仓/反向) 按教程思路在原有脚本上做修改:增加多个交易品种,并确保选...
第三周【回测策略实战检验】 本周体验了我个人认为比较重要的回测的的能力,运行的周期,回测速度等目前看对于简单策略来说还是不错的,回测很快,反馈及时。
【多策略应用与实践】-第二周使用体验和建议 目前使用优点 整个平台相对完善,策略开发,回测(暂时还没深度体验),仿真,实盘等功能基本都有,可以在一个平台内完成所有操作,目前对于没接触过的人来说,确实是一个可以快速接触,并且跑起来的平台。 可以在任意地点登录web查看修改。 目前感觉不足 1.这个查看运行效果,检查log实在是太难受了,log的窗口小,滑动卡顿,并且还不能下载?(或许我没找到)。强烈建议增加醒目的下载按钮,我之前跑策略回测一年的话都是几个G的log在电脑本地用klog工具打开...
在PandaAI上的第一次量化尝试 在PandaAI(pandai)上尝试了次平台上的“从0到1”的量化尝试:不追求多复杂,先把一套能跑、能看、能回测的策略搭起来。这里记录一下我的第一手体验 总的来说,有如下一些优点 -写代码的地方、看效果的地方、做执行的地方,基本都能在一个平台里闭环。 -可以使用平台的ai助手直接修改交易代码,目前主要py,看起来一些小的功能和改动都是正常的。 -整个平台依托于远程网页,可以在任意有电脑的地点登录,将一般自己部署vps之类的与交易相关不多的都屏蔽了。专注交易。 后续我继续试用,看看策略具体的一些运行效果,以及调试迭代过程中继续体验